OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1216–1221

Nonlocal defect solitons in parity–time-symmetric photonic lattices with spatially modulated nonlinearity

Jianing Xie, Weicheng Chen, Jiantao Lv, Zhikun Su, Chengping Yin, and Yingji He  »View Author Affiliations


JOSA B, Vol. 30, Issue 5, pp. 1216-1221 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001216


View Full Text Article

Enhanced HTML    Acrobat PDF (681 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the existence and stability of nonlocal defect solitons (NDSs) in parity–time-symmetric photonic lattices with spatially modulated nonlocal nonlinearity. We reveal that solitons exist in the semi-infinite gap and a defect in the real part of nonlinear lattices plays a significant role in controlling the extent of the stability domains. We show that the existence and stability of the NDSs can be profoundly affected by the parameters of the nonlinear lattice structures.

© 2013 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: December 3, 2012
Revised Manuscript: February 2, 2013
Manuscript Accepted: March 19, 2013
Published: April 15, 2013

Citation
Jianing Xie, Weicheng Chen, Jiantao Lv, Zhikun Su, Chengping Yin, and Yingji He, "Nonlocal defect solitons in parity–time-symmetric photonic lattices with spatially modulated nonlinearity," J. Opt. Soc. Am. B 30, 1216-1221 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-5-1216


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Bender and S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry,” Phys. Rev. Lett 80, 5243–5246 (1998). [CrossRef]
  2. Z. Ahmed, “Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential,” Phys. Lett. A 282, 343–348 (2001). [CrossRef]
  3. C. M. Bender, D. C. Brody, and H. F. Jones, “Complex extension of quantum mechanics,” Phys. Rev. Lett. 89, 270401 (2002). [CrossRef]
  4. C. M. Bender, D. C. Brody, and H. Jones, “Must a Hamiltonian be Hermitian?” Am. J. Phys. 71, 1095–1102 (2003). [CrossRef]
  5. C. M. Bender, D. C. Brody, H. F. Jones, and B. K. Meister, “Faster than Hermitian quantum mechanics,” Phys. Rev. Lett. 98, 040403 (2007). [CrossRef]
  6. C. M. Bender, “Making sense of non-Hermitian Hamiltonians,” Rep. Prog. Phys. 70, 947–1018 (2007). [CrossRef]
  7. K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “Beam dynamics in PT symmetric optical lattices,” Phys. Rev. Lett. 100, 103904 (2008). [CrossRef]
  8. Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, “Optical solitons in PT periodic potentials,” Phys. Rev. Lett. 100, 030402 (2008). [CrossRef]
  9. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, “Observation of parity-time symmetry in optics,” Nat. Phys. 6, 192–195 (2010). [CrossRef]
  10. K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, “PT-symmetric optical lattices,” Phys. Rev. A 81, 063807 (2010). [CrossRef]
  11. A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, “Observation of PT-symmetry breaking in complex optical potentials,” Phys. Rev. Lett. 103, 093902 (2009). [CrossRef]
  12. O. Bendix, R. Fleischmann, T. Kottos, and B. Shapiro, “Exponentially fragile PT symmetry in lattices with localized eigenmodes,” Phys. Rev. Lett. 103, 030402 (2009). [CrossRef]
  13. K. Zhou, Z. Guo, J. Wang, and S. Liu, “Defect modes in defective parity-time symmetric periodic complex potentials,” Opt. Lett. 35, 2928–2930 (2010). [CrossRef]
  14. H. Wang and J. Wang, “Defect solitons in parity-time periodic potentials,” Opt. Express 19, 4030–4035 (2011). [CrossRef]
  15. L. Chen, R. Li, N. Yang, D. Chen, and L. Li, “Optical modes in PT-symmetric double-channel waveguides,” Proc. Rom. Acad. A 13, 46–54 (2012).
  16. Y. He and D. Mihalache, “Lattice solitons in optical media described by the complex Ginzburg-Landau model with PT-symmetric periodic potentials,” Phys. Rev. A 87, 013812 (2013). [CrossRef]
  17. Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011). [CrossRef]
  18. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton modes, stability, and drift in optical lattices with spatially modulated nonlinearity,” Opt. Lett. 33, 1747–1749 (2008). [CrossRef]
  19. J. Belmonte-Beitia, V. V. Konotop, V. M. Perez-Garcia, and V. E. Vekslerchik, “Localized and periodic exact solutions to the nonlinear Schrödinger equation with spatially modulated parameters: linear and nonlinear lattices,” Chao, Solitons & Fractals 41, 1158–1166 (2009).
  20. Y. Kominis and K. Hizanidis, “Power dependent soliton location and stability in complex photonic structures,” Opt. Express 16, 12124–12138 (2008). [CrossRef]
  21. Z. Rapti, P. G. Kevrekidis, V. V. Konotop, and C. K. R. T. Jones, “Solitary waves under the competition of linear and nonlinear periodic potentials,” J. Phys. A 40, 14151–14163 (2007). [CrossRef]
  22. X. Zhu, H. Wang, L. X. Zheng, H. G. Li, and Y. J. He, “Gap solitons in parity-time complex periodic optical lattices with the real part of superlattices,” Opt. Lett. 36, 2680–2682 (2011). [CrossRef]
  23. H. Li, Z. Shi, X. Jiang, and X. Zhu, “Gray solitons in PT symmetric potentials,” Opt. Lett. 36, 3290–3292 (2011). [CrossRef]
  24. Z. Shi, X. Jiang, X. Zhu, and L. Hua, “Bright spatial solitons in defocusing Kerr media with PT-symmetric potentials,” Phys. Rev. A 84, 053855 (2011). [CrossRef]
  25. F. Ye, Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Nonlinear switching of low-index modes in photonic lattices,” Phys. Rev. A 78, 013847 (2008). [CrossRef]
  26. Y. Li, W. Pang, Y. Chen, Z. Yu, J. Zhou, and H. Zhang, “Defect-mediated discrete solitons in optically induced photorefractive lattices,” Phys. Rev. A 80, 043824 (2009). [CrossRef]
  27. V. A. Brazhnyi, V. V. Konotop, and V. M. Perez-Garcia, “Driving defect modes of Bose-Einstein condensates in optical lattices,” Phys. Rev. Lett. 96, 060403 (2006). [CrossRef]
  28. Z. E. Lu and Z. M. Zhang, “Defect solitons in parity-time symmetric superlattices,” Opt. Express 19, 11457 (2011). [CrossRef]
  29. Y. He, X. Zhu, D. Mihalache, J. Liu, and Z. Chen, “Lattices solitons in PT-symmetric mixed linear-nonlinear optical lattices,” Phys. Rev. A 85, 013831 (2012). [CrossRef]
  30. Y. He, X. Zhu, D. Mihalache, J. Liu, and Z. Chen, “Solitons in PT-symmetric linear lattices with spatially periodic modulation of nonlinearity,” Opt. Commun. 285, 3320–3324 (2012). [CrossRef]
  31. Z. G. Chen, M. Segev, and D. N. Christodoulides, “Optical spatial solitons: historical overview and recent advances,” Rep. Prog. Phys. 75, 086401 (2012). [CrossRef]
  32. Z. Xu, Y. V. Kartashov, and L. Torner, “Soliton mobility in nonlocal optical lattices,” Phys. Rev. Lett. 95, 113901 (2005). [CrossRef]
  33. Y. V. Kartashov, L. Torner, and V. A. Vysloukh, “Lattice-supported surface solitons in nonlocal nonlinear media,” Opt. Lett. 31, 2595–2597 (2006). [CrossRef]
  34. F. Ye, Y. V. Kartashov, and L. Torner, “Nonlocal surface dipoles and vortices,” Phys. Rev. A 77, 033829 (2008). [CrossRef]
  35. S. Hu, X. Ma, D. Lu, Y. Zheng, and W. Hu, “Defect solitons in parity-time-symmetric optical lattices with nonlocal nonlinearity,” Phys. Rev. A 85, 043826 (2012). [CrossRef]
  36. C. Yin, Y. He, H. Li, and J. Xie, “Solitons in parity-time symmetric potentials with spatially modulated nonlocal nonlinearity,” Opt. Express 20, 19355–19362 (2012). [CrossRef]
  37. Y. V. Bludov and V. V. Konotop, “Localized modes in arrays of boson-fermion mixtures,” Phys. Rev. A 74, 043616 (2006). [CrossRef]
  38. W. Krolikowski, M. Saffman, B. Luther-Davies, and C. Denz, “Anomalous interaction of spatial solitons in photorefractive media,” Phys. Rev. Lett. 80, 3240–3243 (1998). [CrossRef]
  39. M. Peccianti, K. A. Brzdakiewicz, and G. Assanto, “Nonlocal spatial soliton interactions in nematic liquid crystals,” Opt. Lett. 27, 1460–1462 (2002). [CrossRef]
  40. N. I. Nikolov, D. Neshev, O. Bang, and W. Z. Krolikowski, “Quadratic solitons as nonlocal solitons,” Phys. Rev. E 68, 036614 (2003). [CrossRef]
  41. W. Hu, T. Zhang, Q. Guo, X. Li, and S. Lan, “Nonlocality-controlled interaction of spatial solitons in nematic liquid crystals,” Appl. Phys. Lett. 89, 071111 (2006). [CrossRef]
  42. P. V. Larsen, M. P. Sorensen, O. Bang, W. Z. Krolikowski, and S. Trillo, “Nonlocal description of X waves in quadratic nonlinear materials,” Phys. Rev. E 73, 036614 (2006). [CrossRef]
  43. N. Ghofraniha, C. Conti, G. Ruocco, and S. Trillo, “Shocks in nonlocal media,” Phys. Rev. Lett. 99, 043903 (2007). [CrossRef]
  44. C. Conti, A. Fratalocchi, M. Peccianti, G. Ruocco, and S. Trillo, “Observation of a gradient catastrophe generating solitons,” Phys. Rev. Lett. 102, 083902 (2009). [CrossRef]
  45. R. Bekenstein and M. Segev, “Self-accelerating optical beams in highly nonlocal nonlinear media,” Opt. Express 19, 23706–23715 (2011). [CrossRef]
  46. J. Yang, “Iteration methods for stability spectra of solitary waves,” J. Comput. Phys. 277, 862–6876 (2008).
  47. M. J. Ablowitz and Z. H. Musslimani, “Spectral renormalization method for computing self-localized solutions to nonlinear systems,” Opt. Lett. 30, 2140–2142 (2005). [CrossRef]
  48. Y. He, D. Mihalache, and B. Hu, “Soliton drift, rebound, penetration, and trapping at the interface between media with uniform and spatially modulated nonlinearities,” Opt. Lett. 35, 1716–1718 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited