OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1222–1231

Analysis of the strong coupling regime of a quantum well in a photonic crystal microcavity and its polarization dependence studied by the finite-difference time-domain method

Jose M. Llorens, Ivan Prieto, Luis E. Munioz-Camuniez, and Pablo Aitor Postigo  »View Author Affiliations

JOSA B, Vol. 30, Issue 5, pp. 1222-1231 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (898 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We provide a methodology for the study of a photonic crystal microcavity and a quantum well (QW) in the strong coupling regime by finite difference in the time domain. Numerical results for an InP L7 photonic crystal microcavity coupled to an ideal QW are provided. A comparison of the time analysis processed by the discrete Fourier transform, the Padé approximant, and harmonic inversion is presented to optimize the computation time. We present a method to solve the uncertainty of the frequency spectrum depending on the starting time used in the spectral analysis. The influence of polarization anisotropy on strong coupling is studied. The Rabi splitting is exactly zero only when the induced polarization in the QW is aligned with a field component incompatible with the symmetry of the mode.

© 2013 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(260.5430) Physical optics : Polarization
(270.5580) Quantum optics : Quantum electrodynamics
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: November 14, 2012
Revised Manuscript: March 10, 2013
Manuscript Accepted: March 11, 2013
Published: April 18, 2013

Jose M. Llorens, Ivan Prieto, Luis E. Munioz-Camuniez, and Pablo Aitor Postigo, "Analysis of the strong coupling regime of a quantum well in a photonic crystal microcavity and its polarization dependence studied by the finite-difference time-domain method," J. Opt. Soc. Am. B 30, 1222-1231 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314–3317 (1992). [CrossRef]
  2. B. Deveaud, The Physics of Semiconductor Microcavities(Wiley-VCH, 2007).
  3. D. Sanvitto and V. Timofeev, Exciton Polaritons in Microcavities: New Frontiers, Springer Series in Solid-State Sciences (Springer, 2012), Vol. 172.
  4. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House Antennas and Propagation Library (Artech House, 2000).
  5. D. Gerace, M. Agio, and L. C. Andreani, “Quantum theory of photonic crystal polaritons,” Phys. Status Solidi B 1, 446–449 (2004). [CrossRef]
  6. M. Sugawara, T. Fujii, S. Yamazaki, and K. Nakajima, “Optical characteristics of excitons in In1−xGaxAsyP1−y/InP quantum wells,” Phys. Rev. B 44, 1782–1791 (1991). [CrossRef]
  7. Y. Sidor, B. Partoens, F. M. Peeters, J. Maes, M. Hayne, D. Fuster, Y. González, L. González, and V. V. Moshchalkov, “Exciton confinement in InAs/InP quantum wires and quantum wells in the presence of a magnetic field,” Phys. Rev. B 76, 195320 (2007). [CrossRef]
  8. T. Gutbrod, M. Bayer, A. Forchel, J. P. Reithmaier, T. L. Reinecke, S. Rudin, and P. A. Knipp, “Weak and strong coupling of photons and excitons in photonic dots,” Phys. Rev. B 57, 9950–9956 (1998). [CrossRef]
  9. G. Panzarini and L. C. Andreani, “Quantum theory of exciton polaritons in cylindrical semiconductor microcavities,” Phys. Rev. B 60, 16799–16806 (1999). [CrossRef]
  10. R. Houdré, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, “Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments,” Phys. Rev. Lett. 73, 2043–2046 (1994). [CrossRef]
  11. R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room-temperature cavity polaritons in a semiconductor microcavity,” Phys. Rev. B 49, 16761–16764 (1994). [CrossRef]
  12. E. L. Ivchenko and G. Pikus, Superlattices and Other Heterostructures: Symmetry and Optical Phenomena, Springer Series in Solid-State Sciences (Springer, 1997), Vol. 110.
  13. R. Shimada, A. Yablonskii, S. Tikhodeev, and T. Ishihara, “Transmission properties of a two-dimensional photonic crystal slab with an excitonic resonance,” IEEE J. Quantum Electron. 38, 872–879 (2002). [CrossRef]
  14. L. Andreani, D. Gerace, and M. Agio, “Exciton-polaritons and nanoscale cavities in photonic crystal slabs,” Phys. Status Solidi B 242, 2197–2209 (2005). [CrossRef]
  15. M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided bloch surface wave polaritons,” Appl. Phys. Lett. 98, 121118 (2011). [CrossRef]
  16. G. Tarel and V. Savona, “Linear spectrum of a quantum dot coupled to a nanocavity,” Phys. Rev. B 81, 075305 (2010). [CrossRef]
  17. S. Hughes and H. Kamada, “Single-quantum-dot strong coupling in a semiconductor photonic crystal nanocavity side coupled to a waveguide,” Phys. Rev. B 70, 195313 (2004). [CrossRef]
  18. L. A. Dunbar, R. P. Stanley, M. Lynch, J. Hegarty, U. Oesterle, R. Houdré, and M. Ilegems, “Excitation-induced coherence in a semiconductor microcavity,” Phys. Rev. B 66, 195307 (2002). [CrossRef]
  19. M. S. Skolnick, P. R. Tapster, S. J. Bass, A. D. Pitt, N. Apsley, and S. P. Aldred, “Investigation of InGaAs-InP quantum wells by optical spectroscopy,” Semicond. Sci. Technol. 1, 29–40(1986). [CrossRef]
  20. M. S. Skolnick, K. J. Nash, M. K. Saker, S. J. Bass, P. A. Claxton, and J. S. Roberts, “Free-carrier effects on luminescence linewidths in quantum wells,” Appl. Phys. Lett. 50, 1885–1887 (1987). [CrossRef]
  21. FDTD Solutions ver. 7.0. Lumerical Solutions, Inc., Vancouver, BC, Canada (2009).
  22. J. Vučković, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities,” IEEE J. Quantum Electron. 35, 1168–1175 (1999). [CrossRef]
  23. G. Slavcheva, J. Arnold, and R. Ziolkowski, “FDTD simulation of the nonlinear gain dynamics in active optical waveguides and semiconductor microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1052–1062 (2004). [CrossRef]
  24. H. Taniyama, H. Sumikura, and M. Notomi, “Finite-difference time-domain analysis of photonic crystal slab cavities with two-level systems,” Opt. Express 19, 23067 (2011). [CrossRef]
  25. V. Mandelshtam and H. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys. 107, 6756 (1997). [CrossRef]
  26. V. Savona, Z. Hradil, A. Quattropani, and P. Schwendimann, “Quantum theory of quantum-well polaritons in semiconductor microcavities,” Phys. Rev. B 49, 8774–8779 (1994). [CrossRef]
  27. A. Kavokin and G. Malpuech, Cavity Polaritons, Thin Films and Nanostructures (Academic, 2003) Vol. 32.
  28. K. Cho, Optical Response of Nanostructures: Microscopic Nonlocal Theory (Springer, 2003).
  29. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, “Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations,” Phys. Rev. Lett. 64, 2499–2502 (1990). [CrossRef]
  30. L. C. Andreani, “Exciton-polaritons in superlattices,” Phys. Lett. A 192, 99–109 (1994). [CrossRef]
  31. D. Bajoni, “Polariton lasers. Hybrid light-matter lasers without inversion,” J. Phys. D 45, 313001 (2012). [CrossRef]
  32. B. Deveaud-Plédran, “On the condensation of polaritons,” J. Opt. Soc. Am. B 29, A138–A145 (2012). [CrossRef]
  33. R. P. Stanley, S. Pau, U. Oesterle, R. Houdré, and M. Ilegems, “Resonant photoluminescence of semiconductor microcavities: the role of acoustic phonons in polariton relaxation,” Phys. Rev. B 55, R4867–R4870 (1997). [CrossRef]
  34. G. Cassabois, A. L. C. Triques, F. Bogani, C. Delalande, P. Roussignol, and C. Piermarocchi, “Polariton–acoustic-phonon interaction in a semiconductor microcavity,” Phys. Rev. B 61, 1696–1699 (2000).
  35. H. M. Gibbs, G. Khitrova, and S. W. Koch, “Exciton-polariton light-semiconductor coupling effects,” Nat. Photonics 5, 273 (2011). [CrossRef]
  36. M. Kira and S. Koch, “Many-body correlations and excitonic effects in semiconductor spectroscopy,” Prog. Quantum Electron. 30, 155–296 (2006). [CrossRef]
  37. K. Böhringer and O. Hess, “A full-time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation,” Prog. Quantum Electron. 32, 159–246 (2008). [CrossRef]
  38. S.-H. Chang and A. Taflove, “Finite-difference time-domain model of lasing action in a four-level two-electron atomic system,” Opt. Express 12, 3827–3833 (2004). [CrossRef]
  39. Y. Huang and S.-T. Ho, “Computational model of solid-state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics,” Opt. Express 14, 3569–3587 (2006). [CrossRef]
  40. S. G. Johnson, “ http://ab-initio.mit.edu/wiki/index.php/Harminv .”
  41. Y. Zeng, Y. Fu, M. Bengtsson, X. Chen, W. Lu, and H. Ågren, “Finite-difference time-domain simulations of exciton-polariton resonances in quantum-dot arrays,” Opt. Express 16, 4507–4519 (2008). [CrossRef]
  42. J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems,” IEEE Trans. Evol. Comput. 10, 646–657 (2006). [CrossRef]
  43. F. Biscani, D. Izzo, and C. H. Yam, “A global optimisation toolbox for massively parallel engineering optimisation,” in 4th International Conference on Astrodynamics Tools and Techniques (ICATT), Madrid, Spain, 3–6 May2010. (arXiv:1004.3824v1)
  44. L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express 17, 14993–15000 (2009). [CrossRef]
  45. E. Palik, Handbook of Optical Constants of Solids, Academic Press Handbook Series (Academic, 1985) Vol. 1.
  46. D. Bajoni, D. Gerace, M. Galli, J. Bloch, R. Braive, I. Sagnes, A. Miard, A. Lemaître, M. Patrini, and L. C. Andreani, “Exciton polaritons in two-dimensional photonic crystals,” Phys. Rev. B 80, 201308 (2009). [CrossRef]
  47. S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaître, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett. 99, 111106 (2011). [CrossRef]
  48. Y. Zhang, W. Zheng, M. Xing, G. Ren, H. Wang, and L. Chen, “Application of fast Padé approximation in simulating photonic crystal nanocavities by FDTD technology,” Opt. Commun. 281, 2774–2778 (2008). [CrossRef]
  49. F. P. Laussy, E. del Valle, and C. Tejedor, “Luminescence spectra of quantum dots in microcavities. I. Bosons,” Phys. Rev. B 79, 235325 (2009). [CrossRef]
  50. C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics, Vol. 1 (Wiley, 1992), pp. 337–405.
  51. R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room temperature exciton-photon Rabi splitting in a semiconductor microcavity,” Le Journal de Physique IV 3, 51–58 (1993).
  52. C. Weisbuch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications (Academic, 1991).
  53. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201112 (2007). [CrossRef]
  54. D. Englund, A. Majumdar, M. Bajcsy, A. Faraon, P. Petroff, and J. Vučković, “Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system,” Phys. Rev. Lett. 108, 093604 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited