OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1248–1255

Polarization-insensitive self-collimation and beam splitter based on triangular-lattice annular photonic crystals

Liyong Jiang, Hong Wu, and Xiangyin Li  »View Author Affiliations


JOSA B, Vol. 30, Issue 5, pp. 1248-1255 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001248


View Full Text Article

Enhanced HTML    Acrobat PDF (2039 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper systematically investigates the self-collimation behavior in silicon-based triangular-lattice annular photonic crystals (PCs). It is found that, in comparison with normal air-hole PCs, annular PCs more easily suppress the separation between TE-2 and TM-2 bands along the Γ-M direction by increasing the inner radius of annular air rings. Such a feature is quite beneficial in the formation of a flat equi-frequency contour for both polarizations at the same frequency, which means a polarization-insensitive self-collimation (PISC) effect. Further analysis has shown that, to support PISC, the minimum ratio between the inner and outer radii of annular air rings will gradually increase as the outer radius changes from 0.25a to 0.49a. When the ratio is fixed, the annular air rings with larger outer radius will provide wider common frequency area to realize PISC. We have also investigated the transmission feature for different annular PCs and chosen an optimal structure to illustrate the PISC effect. Finally, a polarization beam splitter has been proposed and demonstrated based on the unique PISC and band-gap feature in triangular-lattice annular PCs.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.3120) Optical devices : Integrated optics devices
(230.3990) Optical devices : Micro-optical devices
(260.2030) Physical optics : Dispersion

ToC Category:
Physical Optics

History
Original Manuscript: January 8, 2013
Revised Manuscript: February 24, 2013
Manuscript Accepted: March 24, 2013
Published: April 19, 2013

Citation
Liyong Jiang, Hong Wu, and Xiangyin Li, "Polarization-insensitive self-collimation and beam splitter based on triangular-lattice annular photonic crystals," J. Opt. Soc. Am. B 30, 1248-1255 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-5-1248


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987). [CrossRef]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  3. Y. Fink, J. N. Winn, S. H. Fan, C. P. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998). [CrossRef]
  4. M. Tokushima, H. Kosaka, A. Tomita, and H. Yamada, “Lightwave propagation through a 120 degrees sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000). [CrossRef]
  5. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russel, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1478 (1998). [CrossRef]
  6. W. Jia, J. Deng, A. M. Sahadevan, H. Wu, L. Y. Jiang, X. Y. Li, C. S. Bhatia, H. Yang, and A. J. Danner, “Design and fabrication of high efficiency power coupler between different photonic crystal waveguides,” Appl. Phys. Lett. 98, 241102 (2011). [CrossRef]
  7. M. W. McCutcheon, P. B. Deotare, Y. Zhang, and M. LonCar, “High-Q transverse-electric/transverse-magnetic photonic crystal nanobeam cavities,” Appl. Phys. Lett. 98, 111117 (2011). [CrossRef]
  8. C. Y. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104 (2002). [CrossRef]
  9. L. Y. Jiang, H. Wu, and X. Y. Li, “Dual-negative-refraction and imaging effects in normal two-dimensional photonic crystals with hexagonal lattices,” Opt. Lett. 37, 1829–1831 (2012). [CrossRef]
  10. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef]
  11. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999). [CrossRef]
  12. D. Chigrin, S. Enoch, C. Sotomayor Torres, and G. Tayeb, “Self-guiding in two-dimensional photonic crystals,” Opt. Express 11, 1203–1211 (2003). [CrossRef]
  13. X. F. Yu and S. H. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3523 (2003). [CrossRef]
  14. S. Y. Shi, A. Sharkawy, C. H. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29, 617–619 (2004). [CrossRef]
  15. D. Y. Zhao, J. Zhang, P. J. Yao, X. Y. Jiang, and X. Y. Chen, “Photonic crystal Mach-Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007). [CrossRef]
  16. Y. L. Zhang, Y. Zhang, and B. J. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15, 9287–9292 (2007). [CrossRef]
  17. D. W. Prather, S. Y. Shi, D. M. Pustai, C. H. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, and J. Murakowski, “Dispersion-based optical routing in photonic crystals,” Opt. Lett. 29, 50–52 (2004). [CrossRef]
  18. R. Iliew, C. Etrich, T. Pertsch, E. Lederer, and K. Staliunas, “Subdiffractive all-photonic crystal Fabry-Perot resonators,” Opt. Lett. 33, 2695–2697 (2008). [CrossRef]
  19. D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D 40, 2635–2651 (2007). [CrossRef]
  20. X. P. Shen, K. Han, Y. F. Shen, H. P. Li, Z. W. Xiao, and J. Zheng, “Self-collimation of unpolarized electromagnetic waves in 2D photonic crystals,” Acta Phys. Sinica 55, 2760–2764(2006).
  21. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdr, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32, 530–532 (2007). [CrossRef]
  22. Y. Xu, X. J. Chen, S. Lan, Q. F. Dai, Q. Guo, and L. J. Wu, “Polarization-independent self-collimation based on pill-void photonic crystals with square symmetry,” Opt. Express 17, 4903–4912 (2009). [CrossRef]
  23. H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13, 10316–10326 (2005). [CrossRef]
  24. J. Hou, D. S. Gao, H. M. Wu, and Z. P. Zhou, “Polarization insensitive self-collimation waveguide in square lattice annular photonic crystals,” Opt. Commun. 282, 3172–3176 (2009). [CrossRef]
  25. L. Y. Jiang, H. Wu, W. Jia, and X. Y. Li, “Polarization-independent negative refraction effect in SiO2-GaAs annular photonic crystals,” J. Appl. Phys. 111, 023508 (2012). [CrossRef]
  26. S. G. Johnson and J. D. Joannopoulos, “MIT Photonic-Bands package,” The MIT Photonic-Bands Package Home Page, http://ab-initio.mit.edu/mpb/ (2008).
  27. A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef]
  28. M. H. Pu, L. Liu, L. H. Frandsen, H. Y. Ou, K. Yvind, and J. M. Hvam, “Silicon-on-insulator ring-shaped photonic crystal waveguides for refractive index sensing,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JWA20.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited