OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1256–1260

Refractive index biosensor based on microstructured optical fiber long-period gratings: a theoretical analysis

Yuefeng Qi, Xiaoqian Gao, and Weihong Bi  »View Author Affiliations

JOSA B, Vol. 30, Issue 5, pp. 1256-1260 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (702 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A kind of label-free refractive index biosensor based on long-period gratings (LPGs) inscribed in microstructured optical fibers (MOFs) is theoretically studied. The finite element method is used to visualize the mode field distribution along the grapefruit MOF. The transmission spectrum of LPG in the air or liquid is simulated by the coupled-mode theory. An immobilized biorecognition molecules layer on the inner walls of the holes in the MOF provides the ability to capture analyte molecules selectively. Numerical results show that an ultrahigh refractive index sensitivity of approximately 397.3nm/RIU over the refractive index range of 1.4–1.5 is achieved. Moreover, the sensitivity of the grapefruit MOF can be improved by reducing the periods of gratings. In addition, the shift of the resonant wavelength is linear to the analyte thickness with good sensitivity about 0.6nm/nm. It is expected to play a great role in theoretical guidance for further development of biosensors.

© 2013 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 7, 2012
Revised Manuscript: March 7, 2013
Manuscript Accepted: March 18, 2013
Published: April 19, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Yuefeng Qi, Xiaoqian Gao, and Weihong Bi, "Refractive index biosensor based on microstructured optical fiber long-period gratings: a theoretical analysis," J. Opt. Soc. Am. B 30, 1256-1260 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008). [CrossRef]
  2. S. Dante, D. Duval, B. Sepulveda, A. B. Gonzalez-Guerrero, J. R. Sendra, and L. M. Lechuga, “All-optical phase modulation for integrated interferometric biosensors,” Opt. Express 20, 7195–7205 (2012). [CrossRef]
  3. H. Y. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. D. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15, 9139–9146(2007). [CrossRef]
  4. P. B. Liu, H. Huang, T. Cao, Z. N. Tang, X. Y. Liu, Z. B. Qi, M. K. Ren, and H. B. Wu, “An optofluidics biosensor consisted of high-finesse Fabry–Pérot resonator,” Appl. Phys. Lett. 100, 233705 (2012). [CrossRef]
  5. A. M. R. Pinto and M. Lopez-Amo, “Photonic crystal fibers for sensing applications,” J. Sens.2012, 598178 (2012).
  6. G. A. Cardenas-Sevilla, V. Finazzi, J. Villatoro, and V. Pruneri, “Photonic crystal fiber sensor array based on modes overlapping,” Opt. Express 19, 7596–7602 (2011). [CrossRef]
  7. Z. Y. Wang, J. R. Heflin, R. H. Stolen, and S. Ramachandran, “Highly sensitive optical response of optical fiber long period gratings to nanometer-thick ionic self-assembled multilayers,” Appl. Phys. Lett. 86, 223104 (2005). [CrossRef]
  8. P. Pilla, V. Malachovska, A. Borriello, A. Buosciolo, M. Giordano, L. Ambrosio, A. Cutolo, and A. Cusano, “Transition mode long period grating biosensor with functional multilayer coatings,” Opt. Express 19, 512–526 (2011). [CrossRef]
  9. X. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta 620, 8–26 (2008). [CrossRef]
  10. M. A. Cooper, Label-Free Biosensors: Techniques and Applications, 1st ed. (Cambridge University, 2009).
  11. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic crystal-fiber long-period grating,” Opt. Lett. 33, 563–565 (2008). [CrossRef]
  12. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Hoiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14, 8224–8231 (2006). [CrossRef]
  13. J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express 16, 20834–20847 (2008). [CrossRef]
  14. P. Pilla, A. Sandomenico, V. Malachovska, A. Borriello, M. Giordano, A. Cutolo, M. Ruvo, and A. Cusano, “A protein-based biointerfacing route toward label-free immunoassays with long period gratings in transition mode,” Biosens. Bioelectron. 31, 486–491 (2012). [CrossRef]
  15. Z. H. He, Y. N. Zhu, J. Kaňka, and H. Du, “Core-cladding mode coupling and recoupling in photonic crystal fiber for enhanced overlap of evanescent field using long-period gratings,” Opt. Express 18, 507–512 (2010). [CrossRef]
  16. P. Peluso, D. S. Wilson, D. Do, H. Tran, M. Venkatasubbaiah, D. Quincy, B. Heidecker, K. Poindexter, N. Tolani, M. Phelan, K. Witte, L. S. Jung, P. Wagner, and S. Nock, “Optimizing antibody immobilization strategies for the construction of protein microarrays,” Anal. Biochem. 312, 113–124 (2003). [CrossRef]
  17. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997). [CrossRef]
  18. J. N. Wang and C. Y. Luo, “Long-period fiber grating sensors for the measurement of liquid level and fluid-flow velocity,” Sensors 12, 4578–4593 (2012). [CrossRef]
  19. K. Dossou, M. A. Byrne, and L. C. Botten, “Finite element computation of grating scattering matrices and application to photonic crystal band calculations,” J. Comput. Phys. 219, 120–143 (2006). [CrossRef]
  20. S. S. Mishra and V. K. Singh, “Designing of index-guiding photonic crystal fiber by finite element method simulation,” Int J. Adv. Net. Appl. 02, 666–670 (2010).
  21. T. Q. Huy, N. T. Hong-Hanh, P. V. Chung, D. D. Anh, P. T. Nga, and M. A. Tuah, “Characterization of immobilization methods of antiviral antibodies in serum for electrochemical biosensors,” Appl. Surf. Sci. 257, 7090–7095 (2011). [CrossRef]
  22. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am. A 14, 1760–1773 (1997). [CrossRef]
  23. Y. G. Han, B. H. Lee, W. T. Han, U. Paek, and Y. Chung, “Resonance peak shift and dual peak separation of long-period fiber gratings for sensing applications,” Photonics Technol. Lett. 13, 699–701 (2001). [CrossRef]
  24. X. W. Shu and D. X. Huang, “Highly sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100 μm-period fiber grating,” Opt. Commun. 171, 65–69 (1999). [CrossRef]
  25. C. Markos, Y. Wu, K. Vlachos, G. E. Town, and O. Bang, “Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers,” Opt. Express 19, 7790–7798 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited