OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1261–1269

Polarization effects in diffraction-induced laser pulse splitting in one-dimensional photonic crystals

Sergey E. Svyakhovskiy, Alexander A. Skorynin, Vladimir A. Bushuev, Sergey V. Chekalin, Victor O. Kompanets, Anton I. Maydykovskiy, Tatiana V. Murzina, Vladimir B. Novikov, and Boris I. Mantsyzov  »View Author Affiliations


JOSA B, Vol. 30, Issue 5, pp. 1261-1269 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001261


View Full Text Article

Enhanced HTML    Acrobat PDF (769 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The polarization effects in the diffraction-induced pulse splitting (DIPS) observed under the dynamical Bragg diffraction in the Laue geometry in linear one-dimensional photonic crystals (PCs) are studied theoretically and experimentally. It is demonstrated that the characteristic length of the laser pulse path in a PC, or splitting length, used to describe the temporal pulse splitting, as well as the number of the outgoing femtosecond pulses, are influenced significantly by the polarization of the incident laser pulse. We have observed that the characteristic splitting time in porous quartz PCs for the s-polarized probe pulse is approximately 1.5 times smaller as compared with that measured for the p-polarized radiation. These results are supported by the theoretical description and ensure that the polarization sensitivity of the DIPS effect is due to a large lattice-induced dispersion of the PC. It is also shown that the number of output pulses can be varied from two up to four in both transmission and diffraction directions depending on the polarization of incident femtosecond pulses.

© 2013 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(350.5500) Other areas of optics : Propagation
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

History
Original Manuscript: January 4, 2013
Manuscript Accepted: February 28, 2013
Published: April 19, 2013

Citation
Sergey E. Svyakhovskiy, Alexander A. Skorynin, Vladimir A. Bushuev, Sergey V. Chekalin, Victor O. Kompanets, Anton I. Maydykovskiy, Tatiana V. Murzina, Vladimir B. Novikov, and Boris I. Mantsyzov, "Polarization effects in diffraction-induced laser pulse splitting in one-dimensional photonic crystals," J. Opt. Soc. Am. B 30, 1261-1269 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-5-1261


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Busch, G. Von Freymann, S. Linder, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007). [CrossRef]
  2. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, 2003).
  3. Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011). [CrossRef]
  4. P. Yeh, A. Yariv, and C. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [CrossRef]
  5. H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005). [CrossRef]
  6. H. Altug, and J. Vuckovic, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005). [CrossRef]
  7. A. Belardini, O. Buganov, G. Leahu, A. Dosco, M. Centini, E. Fazio, C. Sibilia, M. Bertolotti, S. Zhukovsky, and S. Gaponenko, “Dynamic response of a coupled-cavities one-dimensional photonic crystal in the femtosecond regime,” J. Optoelectron. Adv. Mater. 8, 2015–2017 (2006).
  8. M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, “Pulsed second-harmonic generation in nonlinear one-dimensional periodic structures,” Phys. Rev. A 56, 3166–3174 (1997). [CrossRef]
  9. A. V. Balakin, V. A. Bushuev, B. I. Mantsyzov, I. A. Ozheredov, E. V. Petrov, A. P. Shkurinov, P. Masselin, and G. Mouret, “Enhancement of sum frequency generation near the photonic band gap edge under the quasi-phase-matching conditions,” Phys. Rev. E 63, 046609 (2001). [CrossRef]
  10. M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, “Low-threshold photonic crystal laser,” Appl. Phys. Lett. 81, 2680–2682 (2002). [CrossRef]
  11. J. T. Mok, C. M. deSterke, and B. J. Eggleton, “Delay-tunable gap-soliton-based slow-light system,” Opt. Express 14, 11987–11996 (2006). [CrossRef]
  12. M. Calvo, P. Cheben, O. Martinez-Matos, F. del Monte, and J. A. Rodrigo, “Experimental detection of the optical Pedellosung effect,” Phys. Rev. Lett. 97, 084801 (2006). [CrossRef]
  13. B. Terhalle, A. Desyatnikov, D. Neshev, W. Krolikowski, C. Denz, and Y. S. Kivshar, “Dynamic diffraction and interband transition in two-dimensional photonic lattices,” Phys. Rev. Lett. 106, 083902 (2011). [CrossRef]
  14. S. Savo, E. Di Gennaro, C. Miletto, A. Andreone, P. Dardano, L. Moretti, and V. Mocella, “Pendellosung effect in photonic crystals,” Opt. Express 16, 9097–9105 (2008). [CrossRef]
  15. A. Balestreri, L. C. Andreani, and M. Agio, “Optical properties and diffraction effects in opal photonic crystals,” Phys. Rev. E 74, 036603 (2006). [CrossRef]
  16. V. A. Bushuev and B. I. Mantsyzov, “Linear effect of doubling of the laser pulse repetition rate in the Laue geometry of Bragg diffraction in a photonic crystal,” Bull. Russ. Acad. Sci.: Phys. 72, 30–34 (2008).
  17. A. A. Skorynin, V. A. Bushuev, and B. I. Mantsyzov, “Dynamical Bragg diffraction of optical pulses in photonic crystals in the Laue geometry: diffraction-induced splitting, selective compression, and focusing of pulses,” JETP 115, 56–67 (2012). [CrossRef]
  18. S. E. Svyahovskiy, V. O. Kompanets, A. I. Maidykovskiy, T. V. Murzina, S. V. Chekalin, V. A. Bushuev, A. A. Skorynin, and B. I. Mantsyzov, “Observation of diffraction-induced laser pulse splitting in a photonic crystal,” Phys. Rev. A 86, 013843 (2012). [CrossRef]
  19. Z. G. Pinsker, Dynamical Scattering of X-rays in Crystals, Vol. 3 of Springer Series On Solid-State Science (Springer, 1977).
  20. C. J. Benton and D. V. Skryabin, “Coupling induced anomalous group velocity dispersion in nonlinear arrays of silicon photonic wires,” Opt. Express 17, 5879–5884 (2009). [CrossRef]
  21. S. E. Svyakhovskiy, A. I. Maydykovsky, and T. V. Murzina, “Mesoporous silicon photonic structures of thousands of periods,” J. Appl. Phys. 112, 013106 (2012). [CrossRef]
  22. L. A. Golovan, V. A. Melnikov, S. O. Konorov, A. B. Fedotov, V. Y. Timoshenko, A. M. Zheltikov, P. K. Kashkarov, D. A. Ivanov, G. I. Petrov, and V. V. Yakovlev, “Linear and nonlinear optical anisotropy of amorphous oxidized silicon films induced by a network of pores,” Phys. Rev. B 73, 115337 (2006). [CrossRef]
  23. B. Bruser, I. Staude, G. Freymann, M. Wegener, and U. Pietsch, “Visible light Laue diffraction from woodpile photonic crystals,” Appl. Opt. 51, 6732–6737 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited