OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1270–1275

Graphene mode-locked multipass-cavity femtosecond Cr4+: forsterite laser

Sarper Ozharar, Isinsu Baylam, M. Natali Cizmeciyan, Osman Balci, Ercag Pince, Coskun Kocabas, and Alphan Sennaroglu  »View Author Affiliations

JOSA B, Vol. 30, Issue 5, pp. 1270-1275 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (642 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report, for the first time to our knowledge, the use of graphene as a saturable absorber in an energy-scaled femtosecond Cr4+: forsterite laser. By incorporating a multipass cavity, the repetition rate of the original short resonator was reduced to 4.51 MHz, which resulted in the generation of 100 fs, nearly transform-limited pulses at 1252 nm with a peak power of 53 kW. To the best of our knowledge, this is the highest peak power obtained from a room-temperature, femtosecond Cr4+: forsterite laser mode locked with a graphene saturable absorber. The corresponding pulse energy was 5.3 nJ with only 24 mW of average output power. The saturation fluence and modulation depth of the GSA were measured to be 25μJ/cm2 and 0.74%, respectively. The nonlinear effects in the Cr4+: forsterite medium that limit further power scaling were also investigated by using different output couplers.

© 2013 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3600) Lasers and laser optics : Lasers, tunable
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(140.7090) Lasers and laser optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 10, 2013
Revised Manuscript: March 14, 2013
Manuscript Accepted: March 18, 2013
Published: April 19, 2013

Sarper Ozharar, Isinsu Baylam, M. Natali Cizmeciyan, Osman Balci, Ercag Pince, Coskun Kocabas, and Alphan Sennaroglu, "Graphene mode-locked multipass-cavity femtosecond Cr4+: forsterite laser," J. Opt. Soc. Am. B 30, 1270-1275 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354, 56–58 (1991). [CrossRef]
  2. H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, “C-60—Buckminsterfullerene,” Nature 318, 162–163 (1985). [CrossRef]
  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004). [CrossRef]
  4. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012). [CrossRef]
  5. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010). [CrossRef]
  6. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009). [CrossRef]
  7. A. B. Kuzmenko, E. V. Heumen, F. E. Carbone, and A. D. D. Marel, “Universal optical conductance of graphite,” Phys. Rev. Lett. 100, 117401 (2008). [CrossRef]
  8. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Y. L. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009). [CrossRef]
  9. I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70 fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012). [CrossRef]
  10. W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D. I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett. 36, 4089–4091 (2011). [CrossRef]
  11. J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2 μm wavelength,” Opt. Lett. 37, 2085–2087 (2012). [CrossRef]
  12. M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38, 341–343 (2013). [CrossRef]
  13. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997). [CrossRef]
  14. V. V. Yakovlev, A. Ivanov, and V. Shcheslavskiy, “High-energy femtosecond Cr4+: forsterite oscillators and their applications in biomedical and material sciences,” Appl. Phys. B 74, S145–S152 (2002). [CrossRef]
  15. C. K. Sun, C. C. Chen, S. W. Chu, T. H. Tsai, Y. C. Chen, and B. L. Lin, “Multiharmonic-generation biopsy of skin,” Opt. Lett. 28, 2488–2490 (2003). [CrossRef]
  16. A. Sennaroglu, T. J. Carring, and C. R. Pollock, “Femtosecond pulse generation by using an additive-pulse mode-locked chromium-doped forsterite laser operated at 77 K,” Opt. Lett. 17, 1216–1218 (1992). [CrossRef]
  17. A. Seas, V. Petricevic, and R. R. Alfano, “Self-mode-locked chromium-doped forsterite laser generates 50 fs pulses,” Opt. Lett. 18, 891–893 (1993). [CrossRef]
  18. Y. Pang, V. Yanovsky, F. Wise, and B. I. Minkov, “Self-mode-locked Cr:forsterite laser,” Opt Lett 18, 891–893 (1993). [CrossRef]
  19. C. Chudoba, J. G. Fujimoto, E. P. Ippen, H. A. Haus, U. Morgner, F. X. Kaertner, V. Scheuer, G. Angelow, and T. Tschudi, “All-solid-state Cr:forsterite laser generating 14 fs pulses at 1.3 μm,” Opt. Lett. 26, 292–294 (2001). [CrossRef]
  20. Z. G. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, and T. Nakagawa, “Femtosecond Cr:forsterite laser with mode locking initiated by a quantum-well saturable absorber,” IEEE J. Quantum Electron. 33, 1975–1981 (1997). [CrossRef]
  21. R. P. Prasankumar, C. Chudoba, J. G. Fujimoto, P. Mak, and M. F. Ruane, “Self-starting mode locking in a Cr : forsterite laser by use of non-epitaxially-grown semiconductor-doped silica films,” Opt. Lett. 27, 1564–1566 (2002). [CrossRef]
  22. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, “Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber,” Opt. Lett. 33, 2449–2451 (2008). [CrossRef]
  23. I. Baylam, S. Ozharar, H. Cankaya, S. Y. Choi, K. Kim, F. Rotermund, U. Griebner, V. Petrov, and A. A. Sennaroglu, “Energy scaling of a carbon nanotube saturable absorber mode-locked femtosecond bulk laser,” Opt. Lett. 37, 3555–3557(2012). [CrossRef]
  24. V. Shcheslavskiy, V. V. Yakovlev, and A. Ivanov, “High-energy self-starting femtosecond Cr4+:Mg2SiO4 oscillator operating at a low repetition rate,” Opt. Lett. 26, 1999–2001 (2001). [CrossRef]
  25. H. Cankaya, J. G. Fujimoto, and A. Sennaroglu, “Low-threshold, 12 MHz, multipass-cavity femtosecond Cr4+: forsterite laser,” Laser Phys. 19, 281–284 (2009). [CrossRef]
  26. H. Cankaya, A. Sennaroglu, and S. Akturk, “Direct generation of 81 nJ pulses and external compression to a subpicosecond regime with a 4.9 MHz chirped-pulse multipass-cavity Cr(4+): forsterite oscillator,” Opt. Lett. 36, 1572–1574 (2011). [CrossRef]
  27. X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324, 1312–1314 (2009). [CrossRef]
  28. O. Salihoglu, S. Balci, and C. Kocabas, “Plasmon-polaritons on graphene-metal surface and their use in biosensors,” Appl. Phys. Lett. 100, 213110 (2012). [CrossRef]
  29. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006). [CrossRef]
  30. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and A. J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett. 9, 30–35 (2008). [CrossRef]
  31. J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, “Measurement of ultrafast carrier dynamics in epitaxial graphene,” Appl. Phys. Lett. 92, 042116 (2008). [CrossRef]
  32. A. Sennaroglu, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, “Compact femtosecond lasers based on novel multi-pass cavities,” IEEE J. Quantum Electron. 40, 519–528 (2004). [CrossRef]
  33. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000). [CrossRef]
  34. A. Sennaroglu, Photonics and Laser Engineering: Principles, Devices, and Applications (McGraw-Hill, 2010).
  35. S. M. J. Kelly, “Characteristic side-band instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992). [CrossRef]
  36. D. Huang, M. Ulman, L. H. Acioli, H. A. Haus, and J. G. Fujimoto, “Self-focusing-induced saturable loss for laser mode-locking,” Opt. Lett. 17, 511–513 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited