OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1303–1316

Multichannel homodyne detection for quantum optical tomography

Georgios Roumpos and Steven T. Cundiff  »View Author Affiliations

JOSA B, Vol. 30, Issue 5, pp. 1303-1316 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (930 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a multichannel optical homodyne detection setup suitable for measurements of quantum light statistics with ultrafast time resolution. We employ the setup to measure light statistics of diode lasers driven by both a direct and a pulsed current source. In particular, we measure the time-resolved second-order correlation function g(2) and photon number distribution. Our results provide information about the dynamics of the lasing transition.

© 2013 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(270.5290) Quantum optics : Photon statistics
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 30, 2013
Revised Manuscript: March 25, 2013
Manuscript Accepted: March 25, 2013
Published: April 24, 2013

Georgios Roumpos and Steven T. Cundiff, "Multichannel homodyne detection for quantum optical tomography," J. Opt. Soc. Am. B 30, 1303-1316 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics, 2nd ed. (Wiley-VCH, 2004).
  2. D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993). [CrossRef]
  3. M. Lobino, D. Korystov, C. Kupchak, E. Figueroa, B. C. Sanders, and A. I. Lvovsky, “Complete characterization of quantum-optical processes,” Science 322, 563–566 (2008). [CrossRef]
  4. M. Kira and S. W. Koch, “Quantum-optical spectroscopy of semiconductors,” Phys. Rev. A 73, 013813 (2006). [CrossRef]
  5. M. Kira, S. W. Koch, R. P. Smith, A. E. Hunter, and S. T. Cundiff, “Quantum spectroscopy with Schrödinger-cat states,” Nature Phys. 7, 799–804 (2011). [CrossRef]
  6. D. F. McAlister and M. G. Raymer, “Ultrafast photon-number correlations from dual-pulse, phase-averaged homodyne detection,” Phys. Rev. A 55, R1609–R1612 (1997). [CrossRef]
  7. M. Munroe, D. Boggavarapu, M. E. Anderson, and M. G. Raymer, “Photon-number statistics from the phase-averaged quadrature-field distribution: theory and ultrafast measurement,” Phys. Rev. A 52, R924–R927 (1995). [CrossRef]
  8. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963). [CrossRef]
  9. A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Rev. Mod. Phys. 81, 299–332 (2009). [CrossRef]
  10. M. O. Scully and W. E. Lamb, “Quantum theory of an optical maser. I. general theory,” Phys. Rev. 159, 208–226 (1967). [CrossRef]
  11. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
  12. M. Lax and W. Louisell, “Quantum noise IX: quantum Fokker–Planck solution for laser noise,” IEEE J. Quantum Electron. 3, 47–58 (1967). [CrossRef]
  13. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  14. R. H. Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29(1956). [CrossRef]
  15. M. Ueda, M. Kuwata, N. Nagasawa, T. Urakami, Y. Takiguchi, and Y. Tsuchiya, “Picosecond time-resolved photoelectric correlation measurement with a photon-counting streak camera,” Opt. Commun. 65, 315–318 (1988). [CrossRef]
  16. J. Wiersig, C. Gies, F. Jahnke, M. Aßmann, T. Berstermann, M. Bayer, C. Kistner, S. Reitzenstein, C. Schneider, S. Höfling, A. Forchel, C. Kruse, J. Kalden, and D. Hommel, “Direct observation of correlations between individual photon emission events of a microcavity laser,” Nature 460, 245–249(2009). [CrossRef]
  17. M. Aßmann, F. Veit, M. Bayer, M. van der Poel, and J. M. Hvam, “Higher-order photon bunching in a semiconductor microcavity,” Science 325, 297–300 (2009). [CrossRef]
  18. M. Aßmann, F. Veit, J.-S. Tempel, T. Berstermann, H. Stolz, M. van der Poel, J. M. Hvam, and M. Bayer, “Measuring the dynamics of second-order photon correlation functions inside a pulse with picosecond time resolution,” Opt. Express 18, 20229–20241 (2010). [CrossRef]
  19. F. Boitier, A. Godard, E. Rosencher, and C. Fabre, “Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors,” Nature Phys. 5, 267–270(2009). [CrossRef]
  20. E. Blansett, M. Raymer, G. Khitrova, H. Gibbs, D. K. Serkland, A. Allerman, and K. Geib, “Ultrafast polarization dynamics and noise in pulsed vertical-cavity surface-emitting lasers,” Opt. Express 9, 312–318 (2001). [CrossRef]
  21. E. L. Blansett, M. Raymer, G. Cui, G. Khitrova, H. Gibbs, D. Serkland, A. Allerman, and K. Geib, “Picosecond polarization dynamics and noise in pulsed vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 41, 287–301 (2005). [CrossRef]
  22. P. J. Windpassinger, M. Kubasik, M. Koschorreck, A. Boisen, N. Kjærgaard, E. S. Polzik, and J. H. Müller, “Ultra low-noise differential AC-coupled photodetector for sensitive pulse detection applications,” Meas. Sci. Technol. 20, 055301 (2009). [CrossRef]
  23. M. Kira, G. Roumpos, S. Koch, and S. Cundiff, “Shaping quantum-optical statistics by conditioning ultrafast pulses” (manuscript in preparation, available from cundiffs@jila.colorado.edu).
  24. D. F. McAlister and M. G. Raymer, “Correlation and joint density matrix of two spatial-temporal modes from balanced-homodyne sampling,” J. Mod. Opt. 44, 2359–2383 (1997). [CrossRef]
  25. S. Boyd, and L. Vandenberghe, Convex Optimization (Cambridge University, 2004).
  26. CVX Research, Inc., “CVX: matlab software for disciplined convex programming, version 2.0 beta” (2012), http://cvxr.com/cvx .
  27. M. Grant and S. Boyd, “Graph implementations for nonsmooth convex programs,” in Recent Advances in Learning and Control, V. Blondel, S. Boyd, and H. Kimura, eds. (Springer-Verlag, 2008), pp. 95–110.
  28. G. Roumpos and S. T. Cundiff, “Photon number distributions from a diode laser,” Opt. Lett. 38, 139–141 (2013). [CrossRef]
  29. M. Blazek, S. Hartmann, A. Molitor, and W. Elsaesser, “Unifying intensity noise and second-order coherence properties of amplified spontaneous emission sources,” Opt. Lett. 36, 3455–3457 (2011). [CrossRef]
  30. G. Lachs, “Theoretical aspects of mixtures of thermal and coherent radiation,” Phys. Rev. 138, B1012–B1016 (1965). [CrossRef]
  31. F. T. Arecchi and V. Degiorgio, “Statistical properties of laser radiation during a transient buildup,” Phys. Rev. A 3, 1108–1124 (1971). [CrossRef]
  32. S. Zhu, A. W. Yu, and R. Roy, “Statistical fluctuations in laser transients,” Phys. Rev. A 34, 4333–4347 (1986). [CrossRef]
  33. P. Spano, A. Mecozzi, and A. Sapia, “Statistical distribution of trajectories in the time-intensity plane during semiconductor-laser gain switching,” Phys. Rev. Lett. 64, 3003–3006 (1990). [CrossRef]
  34. P. Horowitz and W. Hill, The Art of Electronics, 2nd ed.(Cambridge University, 1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited