OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1322–1328

Spectroscopic investigation and heat generation of Yb3+/Ho3+ codoped aluminosilicate glasses looking for the emission at 2 μm

Gomes S. N. Eliel, Kagola Upendra Kumar, Paulo T. Udo, Nelson G. C. Astrath, Luis Carlos Malacarne, Mauro L. Baesso, Tomaz Catunda, Richard Moncorgé, and Carlos Jacinto  »View Author Affiliations

JOSA B, Vol. 30, Issue 5, pp. 1322-1328 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (467 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Energy transfer (ET) and heat generation processes in Yb3+/Ho3+-codoped low-silica calcium aluminosilicate glasses were investigated using thermal lens (TL) and photoluminescence measurements looking for the emission around 2.0 μm. Stepwise ET processes from Yb3+ to Ho3+, upon excitation at 0.976 μm, produced highly efficient emission in the mid-infrared range at around 2.0 μm, with high fluorescence quantum efficiency (η10.85 and independent of Ho3+ concentration) and relatively very low thermal loading (<0.4) for concentration up to 1.5% of Ho2O3. An equation was deduced for the description of the TL results that provided the absolute value of η1 and the number of emitted photons at 2.0 μm per absorbed pump photon by the Yb3+ ions, the latter reaching 60% for the highest Ho3+ concentration. These results suggest that the studied codoped system would be a promising candidate for the construction of photonic devices, especially for medical applications.

© 2013 Optical Society of America

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(140.6810) Lasers and laser optics : Thermal effects

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 22, 2013
Revised Manuscript: March 25, 2013
Manuscript Accepted: March 26, 2013
Published: April 24, 2013

Gomes S. N. Eliel, Kagola Upendra Kumar, Paulo T. Udo, Nelson G. C. Astrath, Luis Carlos Malacarne, Mauro L. Baesso, Tomaz Catunda, Richard Moncorgé, and Carlos Jacinto, "Spectroscopic investigation and heat generation of Yb3+/Ho3+ codoped aluminosilicate glasses looking for the emission at 2 μm," J. Opt. Soc. Am. B 30, 1322-1328 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Jacinto, M. V. D. Vermelho, E. A. Gouveia, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, and M. L. Baesso, “Pump-power-controlled luminescence switching in Yb3+/Tm3+ codoped water-free low silica calcium aluminosilicate glasses,” Appl. Phys. Lett. 91, 071102 (2007). [CrossRef]
  2. H. Scheife, G. Huber, E. Heumann, S. Bar, and E. Osiac, “Advances in up-conversion lasers based on Er3+ and Pr3+,” Opt. Mater. 26, 365–374 (2004).
  3. H. Y. Peng, K. Zhang, L. H. Zhang, Y. Hang, J. Q. Xu, Y. L. Tang, Y. Cheng, J. Xiong, C. C. Zhao, G. Z. Chen, and X. M. He, “Spectroscopic properties of Tm, Ho: LiLuF4,” Chinese Opt. Lett. 8, 63–65 (2010). [CrossRef]
  4. D. C. Hanna, R. M. Percival, R. G. Smart, and A. C. Tropper, “Efficient and tunable operation of a Tm-doped fiber laser,” Opt. Commun. 75, 283–286 (1990). [CrossRef]
  5. J. X. Feng, X. T. Tian, Y. M. Li, and K. S. Zhang, “Generation of a squeezing vacuum at a telecommunication wavelength with periodically poled LiNbO(3),” Appl. Phys. Lett. 92, 221102 (2008). [CrossRef]
  6. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser-radar system at 2.1 μm using Tm, Ho-YAG lasers,” Opt. Lett. 16, 773–775 (1991). [CrossRef]
  7. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002). [CrossRef]
  8. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mucke, and B. Janker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37, 101–114 (2002). [CrossRef]
  9. P. H. Ernest, “Cataract surgery after holmium: YAG laser thermal keratoplasty,” J. Cataract. Refract. Surg. 28, 1864–1868 (2002). [CrossRef]
  10. S. K. Doumouchtsis, F. Y. K. Lee, D. Bramwell, and M. M. Fynes, “Evaluation of holmium laser for managing mesh/suture complications of continence surgery,” BJU Int. 108, 1472–1478 (2011). [CrossRef]
  11. A. S. E. Fayad, “Retrograde holmium: YAG laser disintegration of stones in pelvic ectopic kidneys: does it minimize the risk of surgery?,” J. Endourol. 22, 919–922 (2008).
  12. B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009). [CrossRef]
  13. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Continuous-wave operation at 2.1 μm of a diode-laser-pumped, Tm-sensitized Ho-Y3Al5O12 laser at 300 K,” Opt. Lett. 12, 678–680 (1987). [CrossRef]
  14. B. H. Wand, R. F. Kotmel, M. Aita, and G. Samson, “Percutaneous myocardial revascularisation method for heart myocardium|irradiating inner wall of heart with laser energy emitted from distal end of laser to form channel extending from inner surface of myocardium,” in US Patent No. 5389096-A, (14February1995).
  15. R. Sroka, P. Janda, T. Killian, F. Vaz, C. S. Betz, and A. Leunig, “Comparison of long term results after Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates,” Lasers Surg. Med. 39, 324–331 (2007). [CrossRef]
  16. P. Janda, R. Sroka, C. S. Betz, G. Grevers, and A. Leunig, “Ho:YAG and diode laser treatment of hyperplastic inferior nasal turbinates,” Laryngo-Rhino-Otologie 81, 484–490 (2002).
  17. A. Leunig, P. Janda, R. Sroka, R. Baumgartner, and G. Grevers, “Ho:YAG laser treatment of hyperplastic inferior nasal turbinates,” Laryngoscope 109, 1690–1695 (1999). [CrossRef]
  18. R. M. Kuntz, “Current role of lasers in the treatment of benign prostatic hyperplasia (BPH),” Eur. Urol. 49, 961–969 (2006).
  19. M. C. Pierce, S. D. Jackson, M. R. Dickinson, and T. A. King, “Laser-tissue interaction with a high-power 2 μm fiber laser: preliminary studies with soft tissue,” Lasers Surg. Med. 25, 407–413 (1999). [CrossRef]
  20. T. Rothacher, W. Luthy, and H. P. Weber, “Diode pumping and laser properties of Yb:Ho:YAG,” Opt. Commun. 155, 68–72 (1998). [CrossRef]
  21. A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007). [CrossRef]
  22. F. G. Yang, F. P. Yan, Z. Y. You, C. Y. Tu, C. L. Sun, Y. Wang, Z. J. Zhu, and J. F. Li, “End-pumping Tm, Ho, Ce:NaY(WO4)(2) crystal laser at 2.07 μm and the up-conversion repressed,” Laser Phys. Lett. 7, 867–869 (2010). [CrossRef]
  23. J. F. Wu, Z. D. Yao, J. Zong, A. Chavez-Pirson, N. Peyghambarian, and J. R. Yu, “Single frequency fiber laser at 2.05 μm based on Ho-doped germanate glass fiber,” in Proc. SPIE 7195, 71951K (2009). [CrossRef]
  24. C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Energy transfer processes and heat generation in Yb3+-doped phosphate glasses,” J. Appl. Phys. 100, 113103 (2006). [CrossRef]
  25. M. O. Ramirez, D. Jaque, and L. E. Bausa, “Intracavity thermal loading measurements and evaluation of the intrinsic fluorescence quantum efficiency in Yb3+:LiNbO3:MgO lasers,” Appl. Phys. Lett. 89, 091122 (2006). [CrossRef]
  26. Y. Guyot, A. Steimacher, M. P. Belancon, A. N. Medina, M. L. Baesso, S. M. Lima, L. H. C. Andrade, A. Brenier, A. M. Jurdyc, and G. Boulon, “Spectroscopic properties, concentration quenching, and laser investigations of Yb3+-doped calcium aluminosilicate glasses,” J. Opt. Soc. Am. B 28, 2510–2517 (2011). [CrossRef]
  27. Z. G. Zang and Y. J. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt. 51, 3424–3430 (2012). [CrossRef]
  28. Z. G. Zang and Y. J. Zhang, “Low-switching power (<45  mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59, 161–165 (2012). [CrossRef]
  29. C. Jacinto, D. N. Messias, A. A. Andrade, S. M. Lima, M. L. Baesso, and T. Catunda, “Thermal lens and Z-scan measurements: thermal and optical properties of laser glasses—a review,” J. Non-Cryst. Solids 352, 3582–3597 (2006). [CrossRef]
  30. C. Jacinto, M. V. D. Vermelho, M. T. de Araujo, P. T. Udo, N. G. C. Astrath, A. C. Bento, T. Catunda, and M. L. Baesso, “Thermal lens study of energy transfer in Yb3+/Tm3+-codoped glasses,” Opt. Express 15, 9232–9238 (2007). [CrossRef]
  31. D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett. 74, 908–910 (1999). [CrossRef]
  32. D. F. De Sousa, L. A. O. Nunes, J. H. Rohling, and M. L. Baesso, “Laser emission at 1077 nm in Nd3+-doped calcium aluminosilicate glass,” Appl. Phys. B 77, 59–63 (2003). [CrossRef]
  33. L. H. C. Andrade, S. M. Lima, A. Novatski, P. T. Udo, N. G. C. Astrath, A. N. Medina, A. C. Bento, M. L. Baesso, Y. Guyot, and G. Boulon, “Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass,” Phys. Rev. Lett. 100, 027402 (2008).
  34. C. Jacinto, M. T. de Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Fourfold output power enhancement and threshold reduction through thermal effects in an Er3+/Yb3+-codoped optical fiber laser excited at 1.064 μm,” Opt. Lett. 24, 1287–1289 (1999). [CrossRef]
  35. W. F. Silva, G. S. N. Eliel, P. V. dos Santos, M. T. de Araujo, M. V. D. Vermelho, P. T. Udo, N. G. C. Astrath, M. L. Baesso, and C. Jacinto, “Color tunability with temperature and pump intensity in Yb3+/Tm3+ codoped aluminosilicate glass under anti-Stokes excitation,” J. Chem. Phys. 133, 034507 (2010). [CrossRef]
  36. C. Jacinto, M. T. de Araujo, E. A. Gouveia, and A. S. Gouveia-Neto, “Thermal effect on multiphonon-assisted anti-Stokes excited upconversion fluorescence emission in Yb3+-sensitized Er3+-doped optical fiber,” Appl. Phys. B 70, 185–188 (2000).
  37. D. Jaque, L. M. Maestro, E. Escudero, E. M. Rodriguez, J. A. Capobianco, F. Vetrone, A. Juarranz de la Fuente, F. Sanz-Rodriguez, M. C. Iglesias-de la Cruz, C. Jacinto, U. Rocha, and J. Garcia Sole, “Fluorescent nano-particles for multi-photon thermal sensing,” J. Lumin. 133, 249–253 (2013). [CrossRef]
  38. L. S. Herculano, N. G. C. Astrath, L. C. Malacarne, J. H. Rohling, S. T. Tanimoto, and M. L. Baesso, “Laser-induced chemical reaction characterization in photosensitive aqueous solutions,” J. Phys. Chem. B 115, 9417–9420 (2011). [CrossRef]
  39. L. C. Malacarne, N. G. C. Astrath, A. N. Medina, L. S. Herculano, M. L. Baesso, P. R. B. Pedreira, J. Shen, Q. Wen, K. H. Michaelian, and C. Fairbridge, “Soret effect and photochemical reaction in liquids with laser-induced local heating,” Opt. Express 19, 4047–4058 (2011). [CrossRef]
  40. N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Q. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009). [CrossRef]
  41. J. A. Sampaio, S. Gama, M. L. Baesso, and T. Catunda, “Fluorescence quantum efficiency of Er3+ in low silica calcium aluminate glasses determined by mode-mismatched thermal lens spectrometry,” J. Non-Cryst. Solids 351, 1594–1602 (2005). [CrossRef]
  42. D. N. Messias, C. Jacinto, M. J. V. Bell, and T. Catunda, “Thermal and optical properties of Yb3+- and Nd3+-doped phosphate glasses determined by thermal lens technique,” IEEE J. Quantum Electron. 43, 751–757 (2007). [CrossRef]
  43. C. Jacinto, S. L. Oliveira, L. A. O. Nunes, T. Catunda, and M. J. V. Bell, “Thermal lens study of the OH- influence on the fluorescence efficiency of Yb3+-doped phosphate glasses,” Appl. Phys. Lett. 86, 071911 (2005). [CrossRef]
  44. J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited