OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1329–1334

Microresonator-based all-optical transistor

B. D. Clader and S. M. Hendrickson  »View Author Affiliations


JOSA B, Vol. 30, Issue 5, pp. 1329-1334 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001329


View Full Text Article

Enhanced HTML    Acrobat PDF (569 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present theoretical estimates for a low-loss, all-optical transistor using a microresonator device whose fields interact evanescently with rubidium vapor. We use a four-level, electromagnetically induced absorption scheme to couple the light fields of the transistor. We show results indicating that a weak control beam with less than single-photon intensities can switch a much stronger signal beam with switching contrast of greater than 25 dB and loss less than 0.5 dB.

© 2013 Optical Society of America

OCIS Codes
(230.1150) Optical devices : All-optical devices
(270.1670) Quantum optics : Coherent optical effects
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

History
Original Manuscript: March 7, 2013
Revised Manuscript: March 29, 2013
Manuscript Accepted: March 29, 2013
Published: April 24, 2013

Citation
B. D. Clader and S. M. Hendrickson, "Microresonator-based all-optical transistor," J. Opt. Soc. Am. B 30, 1329-1334 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-5-1329


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, M. Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law meets static power,” Computer 36, 68–75 (2003).
  2. D. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4, 3–5 (2010). [CrossRef]
  3. A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005). [CrossRef]
  4. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008). [CrossRef]
  5. M. Albert, A. Dantan, and M. Drewsen, “Cavity electromagnetically induced transparency and all-optical switching using ion coulomb crystals,” Nat. Photonics 5, 633–636 (2011). [CrossRef]
  6. B. C. Jacobs and J. D. Franson, “All-optical switching using the quantum Zeno effect and two-photon absorption,” Phys. Rev. A 79, 063830 (2009). [CrossRef]
  7. S. M. Hendrickson, C. N. Weiler, R. M. Camacho, P. T. Rakich, A. I. Young, M. J. Shaw, T. B. Pittman, J. D. Franson, and B. C. Jacobs, “All-optical switching demonstration using two-photon absorption and the Zeno effect,” Phys. Rev. A 87, 023808 (2013). [CrossRef]
  8. T. Peyronel, O. Firstenberg, Q. Liang, S. Hofferberth, A. Gorshkov, T. Pohl, M. Lukin, and V. Vuletic´, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms,” Nature 488, 57–60 (2012). [CrossRef]
  9. K. Birnbaum, A. Boca, R. Miller, A. Boozer, T. Northup, and H. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005). [CrossRef]
  10. A. Imamog¯lu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997). [CrossRef]
  11. K. J. Resch, J. S. Lundeen, and A. M. Steinberg, “Nonlinear optics with less than one photon,” Phys. Rev. Lett. 87, 123603 (2001). [CrossRef]
  12. P. Grangier, D. F. Walls, and K. M. Gheri, “Comment on ‘strongly interacting photons in a nonlinear cavity’,” Phys. Rev. Lett. 81, 2833 (1998). [CrossRef]
  13. M. J. Werner and A. Imamog¯lu, “Photon–photon interactions in cavity electromagnetically induced transparency,” Phys. Rev. A 61, 011801 (1999). [CrossRef]
  14. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vukovi, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008). [CrossRef]
  15. J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, “Cooperative atom–light interaction in a blockaded Rydberg ensemble,” Phys. Rev. Lett. 105, 193603 (2010). [CrossRef]
  16. A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, “Photon–photon interactions via Rydberg blockade,” Phys. Rev. Lett. 107, 133602 (2011). [CrossRef]
  17. E. Shahmoon, G. Kurizki, M. Fleischhauer, and D. Petrosyan, “Strongly interacting photons in hollow-core waveguides,” Phys. Rev. A 83, 033806 (2011). [CrossRef]
  18. A. Reinhard, T. Volz, M. Winger, A. Badolato, K. Hennessy, E. Hu, and A. Imamog¯lu, “Strongly correlated photons on a chip,” Nat. Photonics 6, 93–96 (2011). [CrossRef]
  19. P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi, “Integration of fiber-coupled high-QSiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006). [CrossRef]
  20. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “Systematic design and fabrication of high-q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths,” Opt. Express 18, 2127–2136 (2010). [CrossRef]
  21. J. Hofer, A. Schliesser, and T. J. Kippenberg, “Cavity optomechanics with ultrahigh-q crystalline microresonators,” Phys. Rev. A 82, 031804 (2010). [CrossRef]
  22. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997). [CrossRef]
  23. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102, 203902 (2009). [CrossRef]
  24. J. Zhang, G. Hernandez, and Y. Zhu, “All-optical switching at ultralow light levels,” Opt. Lett. 32, 1317–1319 (2007). [CrossRef]
  25. B. D. Clader, S. M. Hendrickson, R. M. Camacho, and B. C. Jacobs, “All-optical microdisk switch using EIT,” Opt. Express 21, 6169–6179 (2013). [CrossRef]
  26. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998). [CrossRef]
  27. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  28. M. Yan, E. G. Rickey, and Y. Zhu, “Nonlinear absorption by quantum interference in cold atoms,” Opt. Lett. 26, 548–550 (2001). [CrossRef]
  29. N. Mulchan, D. G. Ducreay, R. Pina, M. Yan, and Y. Zhu, “Nonlinear excitation by quantum interference in a doppler-broadened rubidium atomic system,” J. Opt. Soc. Am. B 17, 820–826 (2000). [CrossRef]
  30. H. A. Haus, Wave and Fields in Optoelectronics (Prentice-Hall, 1984).
  31. A. Gourevitch, G. Venus, V. Smirnov, D. A. Hostutler, and L. Glebov, “Continuous wave, 30 W laser-diode bar with 10 GHz linewidth for Rb laser pumping,” Opt. Lett. 33, 702–704 (2008). [CrossRef]
  32. D. A. Steck, “Rubidium 87 D line data,” http://steck.us/alkalidata/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited