## Efficient, broadband, and robust frequency conversion by fully nonlinear adiabatic three-wave mixing |

JOSA B, Vol. 30, Issue 5, pp. 1342-1351 (2013)

http://dx.doi.org/10.1364/JOSAB.30.001342

Enhanced HTML Acrobat PDF (1742 KB)

### Abstract

A comprehensive physical model of adiabatic three-wave mixing is developed for the fully nonlinear regime, i.e., without making the undepleted pump approximation. The conditions for adiabatic evolution are rigorously derived, together with an estimate of the bandwidth of the process. Furthermore, these processes are shown to be robust and efficient. Finally, numerical simulations demonstrate adiabatic frequency conversion in a wide variety of physically attainable configurations.

© 2013 Optical Society of America

**OCIS Codes**

(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

(190.7110) Nonlinear optics : Ultrafast nonlinear optics

(190.7220) Nonlinear optics : Upconversion

(190.4223) Nonlinear optics : Nonlinear wave mixing

(190.4975) Nonlinear optics : Parametric processes

**ToC Category:**

Nonlinear Optics

**History**

Original Manuscript: February 19, 2013

Manuscript Accepted: March 25, 2013

Published: April 24, 2013

**Citation**

Gil Porat and Ady Arie, "Efficient, broadband, and robust frequency conversion by fully nonlinear adiabatic three-wave mixing," J. Opt. Soc. Am. B **30**, 1342-1351 (2013)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-5-1342

Sort: Year | Journal | Reset

### References

- R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
- J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
- D. S. Hum and M. M. Fejer, “Quasi-phasematching,” C. R. Phys. 8, 180–198 (2007). [CrossRef]
- H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008). [CrossRef]
- H. Suchowski, V. Prabhudesai, D. Oron, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009). [CrossRef]
- H. Suchowski, B. D. Bruner, A. Ganany-Padowicz, I. Juwiler, A. Arie, and Y. Silberberg, “Adiabatic frequency conversion of ultrafast pulses,” Appl. Phys. B 105, 697–702 (2011). [CrossRef]
- J. Moses, H. Suchowski, and F. X. Kärtner, “Fully efficient adiabatic frequency conversion of broadband Ti:sapphire oscillator pulses,” Opt. Lett. 37, 1589–1591 (2012). [CrossRef]
- G. Porat, H. Suchowski, Y. Silberberg, and A. Arie, “Tunable upconverted optical parametric oscillator with intracavity adiabatic sum-frequency generation,” Opt. Lett. 35, 1590–1592 (2010). [CrossRef]
- G. Porat, Y. Silberberg, A. Arie, and H. Suchowski, “Two photon frequency conversion,” Opt. Express 20, 3613–3619 (2012). [CrossRef]
- G. Porat and A. Arie, “Efficient two-process frequency conversion through a dark intermediate state,” J. Opt. Soc. Am. B 29, 2901–2909 (2012). [CrossRef]
- G. Porat and A. Arie, “Efficient broadband frequency conversion via simultaneous three wave mixing processes,” Appl. Phys. Lett.102 (to be published).
- A. A. Rangelov and N. V. Vitanov, “Broadband sum-frequency generation using cascaded processes via chirped quasi-phase-matching,” Phys. Rev. A 85, 045804 (2012). [CrossRef]
- A. Messiah, Quantum Mechanics (North Holland, 2005).
- N. B. Baranova, M. A. Bolshtyanskiĭ, and B. Ya Zel’dovich, “Adiabatic energy transfer from a pump wave to its second harmonic,” Quantum Electron. 25, 638–640 (1995). [CrossRef]
- C. R. Phillips and M. M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35, 3093–3095 (2010). [CrossRef]
- C. R. Phillips and M. M. Fejer, “Adiabatic optical parametric oscillators: steady-state and dynamical behavior,” Opt. Express 20, 2466–2482 (2012). [CrossRef]
- M. D. Crisp, “Adiabatic-following approximation,” Phys. Rev. A 8, 2128–2135 (1973). [CrossRef]
- G. G. Luther, M. S. Alber, J. E. Marsden, and J. M. Robbins, “Geometric analysis of optical frequency conversion and its control in quadratic nonlinear media,” J. Opt. Soc. Am. B 17, 932–941 (2000). [CrossRef]
- R. P. Feynman, F. L. Vernon, and R. W. Hellwarth, “Geometrical representation of the Schrödinger equation for solving maser problems,” J. Appl. Phys. 28, 49–52 (1957). [CrossRef]
- S. Longhi, “Third-harmonic generation in quasi-phase-matched χ(2) media with missing second harmonic,” Opt. Lett. 32, 1791–1793 (2007). [CrossRef]
- H. Pu, P. Maenner, W. Zhang, and H. Y. Ling, “Adiabatic condition for nonlinear systems,” Phys. Rev. Lett. 98, 050406 (2007). [CrossRef]
- O. Yaakobi, L. Caspani, M. Clerici, F. Vidal, and R. Morandotti, “Complete energy conversion by autoresonant three-wave mixing in nonuniform media,” Opt. Express 21, 1623–1632 (2013). [CrossRef]
- J. Liu, B. Wu, and Q. Niu, “Nonlinear evolution of quantum states in the adiabatic regime,” Phys. Rev. Lett. 90, 170404 (2003). [CrossRef]
- S. Meng, L. Fu, and J. Liu, “Adiabatic fidelity for atom-molecule conversion in a nonlinear three-level system,” Phys. Rev. A 78, 053410 (2008). [CrossRef]
- X. Zhou, Y. Zhang, Z. Zhou, and G. Guo, “Adiabatic evolution in nonlinear systems with degeneracy,” Phys. Rev. A 81, 043614 (2010). [CrossRef]
- V. I. Arnol’d, Mathematical Methods of Classical Mechanics (Springer-Verlag, 1978).
- C. J. McKinstrie and X. D. Cao, “Nonlinear detuning of three-wave interactions,” J. Opt. Soc. Am. B 10, 898–912 (1993). [CrossRef]
- S. Trillo, S. Wabnitz, R. Chisari, and G. Cappellini, “Two-wave mixing in a quadratic nonlinear medium: bifurcations, spatial instabilities, and chaos,” Opt. Lett. 17, 637–639 (1992). [CrossRef]
- A. E. Kaplan, “Eigenmodes of χ(2) wave mixings: cross-induced second-order nonlinear refraction,” Opt. Lett. 18, 1223–1225 (1993). [CrossRef]
- Sh. Amiranashvili and A. Demircan, “Hamiltonian structure of propagation equations for ultrashort optical pulses,” Phys. Rev. A 82, 013812 (2010). [CrossRef]
- I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997). [CrossRef]
- O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008). [CrossRef]
- D. N. Nikogosyan, Nonlinear Optical Crystals (Springer, 2005).
- Y. Furukawa, A. Yokotani, T. Sasaki, H. Yoshida, K. Yoshida, F. Nitanda, and M. Sato, “Investigation of bulk laser damage threshold of lithium niobate single crystals by Q-switched pulse laser,” J. Appl. Phys. 69, 3372–3374 (1991). [CrossRef]
- S. Saltiel and Y. Deyanova, “Polarization switching as a result of cascading of two simultaneously phase-matched quadratic processes,” Opt. Lett. 24, 1296–1298 (1999). [CrossRef]
- A. Ganany-Padowicz, I. Juwiler, O. Gayer, A. Bahabad, and A. Arie, “All-optical polarization switch in a quadratic nonlinear photonic quasicrystal,” Appl. Phys. Lett. 94, 091108 (2009). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

### Figures

Fig. 1. |
Fig. 2. |
Fig. 3. |

Fig. 4. |
Fig. 5. |
Fig. 6. |

Fig. 7. |
Fig. 8. |
Fig. 9. |

Fig. 10. |
Fig. 11. |
Fig. 12. |

« Previous Article | Next Article »

OSA is a member of CrossRef.