OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1352–1356

Surface structuring of fused silica with asymmetric femtosecond laser pulse bursts

Javier Hernandez-Rueda, Jan Siegel, Marcial Galvan-Sosa, Alexandro Ruiz de la Cruz, and Javier Solis  »View Author Affiliations

JOSA B, Vol. 30, Issue 5, pp. 1352-1356 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1292 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fused silica surface structuring has been performed using temporally shaped femtosecond laser pulses. For this purpose we have designed pulse bursts with a triangular intensity envelope and different slope sign and interpulse separation that were experimentally generated using a home-made temporal pulse shaper. We have found that pulse bursts with decreasing intensity envelopes are remarkably more efficient in terms of surface ablation than bursts with increasing intensity envelopes. The results reveal that laser energy coupling in the material is enhanced as the interpulse spacing decreases. A study of the ablation depth using stretched single pulses was carried out and compared to results obtained for pulse bursts with different interpulse spacing. We find that the deepest crater was achieved with bursts of 0.5 ps interpulse separation and decreasing envelope. This pulse form also induced the largest change of the surface reflectivity after irradiation. The results are discussed in terms of how the laser energy coupling efficiency is linked to the temporal pulse shape.

© 2013 Optical Society of America

OCIS Codes
(320.5540) Ultrafast optics : Pulse shaping
(320.7120) Ultrafast optics : Ultrafast phenomena

ToC Category:
Ultrafast Optics

Original Manuscript: March 4, 2013
Manuscript Accepted: March 19, 2013
Published: April 24, 2013

Javier Hernandez-Rueda, Jan Siegel, Marcial Galvan-Sosa, Alexandro Ruiz de la Cruz, and Javier Solis, "Surface structuring of fused silica with asymmetric femtosecond laser pulse bursts," J. Opt. Soc. Am. B 30, 1352-1356 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Misawa and S. Juodkazis, 3D Laser Microfabrication(Wiley-VcH Verlag, 2006).
  2. K. Sugioka, M. Meunier, and A. Piqué, Laser Precision Micromachining (Springer-Heidelberg, 2010).
  3. A. P. Joglekar, H. Liu, E. Meyhöfer, G. Mourou, and A. J. Hunt, “Optics at critical intensity: applications to nanomorphing,” Proc. Natl. Acad. Sci. U.S.A. 101, 5856–5861 (2004). [CrossRef]
  4. G. Miyaji and K. Miyazaki, “Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses,” Opt. Express 16, 16265–16271 (2008). [CrossRef]
  5. D. Ashkenasi, R. Stoian, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000). [CrossRef]
  6. F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, “Ablation of crystalline oxides by infrared femtosecond laser pulses,” J. Appl. Phys. 100, 083519 (2006). [CrossRef]
  7. B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006). [CrossRef]
  8. P. Balling and J. Schou, “Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films,” Rep. Prog. Phys. 76, 036502 (2013). [CrossRef]
  9. J. Siegel, D. Puerto, W. Gawelda, G. Bachelier, J. Solis, L. Ehrentraut, and J. Bonse, “Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation,” Appl. Phys. Lett. 91, 082902 (2007). [CrossRef]
  10. J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, and J. Solis, “Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz,” Appl. Surf. Sci. 258, 9389–9393 (2012). [CrossRef]
  11. R. Stoian, A. Mermillod-Blondin, S. W. Winkler, A. Rosenfeld, I. V. Hertel, M. Spyridaki, E. Koudoumas, P. Tzanetakis, C. Fotakis, I. M. Burakov, and N. M. Bulgakova, “Temporal pulse manipulation and consequences for ultrafast laser processing of materials,” Opt. Eng. 44, 051106 (2005). [CrossRef]
  12. C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, and T. Baumert, “Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses,” New J. Phys. 14, 075021 (2012). [CrossRef]
  13. L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15, 17855–17862 (2007). [CrossRef]
  14. M. Boyle, R. Stoian, A. Thoss, A. Rosenfeld, G. Korn, and I. V. Hertel, “Laser ablation of dielectrics with temporally shaped femtosecond pulses,” Appl. Phys. Lett. 80, 353(2002). [CrossRef]
  15. R. Stoian, M. Wollenhaupt, T. Baumert, and I. V. Hertel, “Tempoal pulse tailoring in ultrafast laser manufacturing technologies,” in Laser Precision Microfabrication, Springer Series in Material Sciences 135 (Springer, 2010), pp. 121–144.
  16. J. Hernandez-Rueda, J. Siegel, D. Puerto, M. Galvan-Sosa, W. Gawelda, and J. Solis, “Ad-hoc design of temporally shaped fs laser pulses based on plasma dynamics for deep ablation in fused silica,” Appl. Phys. A, doi: 10.1007/s00339-012-7238-2 (2012). [CrossRef]
  17. M. Wollenhaupt, A. Präkelt, A. Assion, C. Horn, C. Sarpe-Tudoran, M. Winter, and T. Baumert, “Compact, robust, and flexible setup for femtosecond pulse shaping,” Rev. Sci. Instrum. 74, 4950 (2003).
  18. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929 (2000). [CrossRef]
  19. O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24, 2530–2536 (1988). [CrossRef]
  20. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277 (1997). [CrossRef]
  21. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7, 196–198 (1982). [CrossRef]
  22. L. Jiao, Y. Jin, Y. Ji, Y. Tong, F. Wang, T. Liu, and L. Wang, “Research on chemical cleaning technology for super-smooth surface of fused silica substrate,” Proc. SPIE 7655, 76552J (2010). [CrossRef]
  23. M. Lebugle, N. Sanner, S. Pierrot, and O. Utéza, “Absorption dynamics of a femtosecond laser pulse at the surface of dielectrics,” AIP Conf. Proc. 1464, 91–101 (2012). [CrossRef]
  24. For transform-limited pulses the relation between permanent optical changes and change of surface topography was studied in previous works [9,10]. By means of femtosecond microscopy, topography measurements, and conventional microscopy, it was concluded that the annular topography change of 30 nm corresponds to a surface depression via densification, which leads to an increase in reflectivity caused by an increase of the refractive index. For transform-limited pulses the reflectivity increment ΔR/Ro≈3%, and the corresponding structural change leads to an increment of refractive index produced by density increase Δn/no≈Δρ/ρo≈0.6%.
  25. D. Puerto, J. Siegel, A. Ferrer, J. Hernandez-Rueda, and J. Solis, “Correlation of the refractive index change at the surface and inside phosphate glass upon femtosecond laser irradiation,” J. Opt. Soc. Am. B 29, 2665–2668 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited