OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 5 — May. 1, 2013
  • pp: 1368–1372

Broadband polarization-insensitive absorbers in 0.3–2.5 μm using helical metamaterials

ZeQin Lu, Ming Zhao, ZhenYu Yang, Lin Wu, Peng Zhang, Yu Zheng, and JiAn Duan  »View Author Affiliations

JOSA B, Vol. 30, Issue 5, pp. 1368-1372 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (437 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present two kinds of broadband and polarization-insensitive metamaterial (MM) absorbers operating in about 0.3–2.5 μm, including a racemic type and a reflected type. Through finite-difference time-domain simulation, we find that both designs are broadband in function and insensitive to polarization. In comparison, we find that the reflected type absorber possesses broader bandwidth (0.36–2.5 μm) and exhibits higher average absorbance (88.9%), while the racemic type is superior in its polarization-insensitivity characteristic. Differing from designs of most planar MM absorbers based on perfect impedance matching, our designs are based on the principle of mutual radiation.

© 2013 Optical Society of America

OCIS Codes
(300.1030) Spectroscopy : Absorption
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: January 31, 2013
Revised Manuscript: March 10, 2013
Manuscript Accepted: April 9, 2013
Published: April 29, 2013

ZeQin Lu, Ming Zhao, ZhenYu Yang, Lin Wu, Peng Zhang, Yu Zheng, and JiAn Duan, "Broadband polarization-insensitive absorbers in 0.3–2.5 μm using helical metamaterials," J. Opt. Soc. Am. B 30, 1368-1372 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theor. Tech. 47, 2075–2084 (1999). [CrossRef]
  2. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120(2012). [CrossRef]
  3. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008). [CrossRef]
  4. T. Maier and H. Brueckl, “Multispectral microbolometers for the midinfrared,” Opt. Lett. 35, 3766–3768 (2010). [CrossRef]
  5. N. Galler, H. Ditlbacher, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Integrated optical attenuator based on mechanical deformation of an elastomer layer,” Appl. Phys. B 104, 931–934 (2011). [CrossRef]
  6. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010). [CrossRef]
  7. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401–9407 (2011). [CrossRef]
  8. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100, 103506 (2012). [CrossRef]
  9. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication, and characterization,” Opt. Express 16, 7181–7188 (2008). [CrossRef]
  10. M. Diem, T. Koschny, and C. M. Soukoulis, “Wide-angle perfect absorber/thermal emitter in the terahertz regime,” Phys. Rev. B 79, 033101 (2009). [CrossRef]
  11. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009). [CrossRef]
  12. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Sherkenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010). [CrossRef]
  13. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36, 3476–3478 (2011). [CrossRef]
  14. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 045131 (2009). [CrossRef]
  15. H. Tao, M. Bingham, A. C. Strikwerda, D. V. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008). [CrossRef]
  16. B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, “Switchable metamaterial reflector/absorber for different polarized electromagnetic waves,” Appl. Phys. Lett. 97, 051906 (2010). [CrossRef]
  17. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009). [CrossRef]
  18. J. D. Kraus and R. J. Marhefka, Antennas: For All Applications, 3rd ed. (McGraw-Hill, 2003), Chap. 8.
  19. W. L. Stutzman and G. A. Thiele, Antennas Theory and Design, 2nd ed. (Wiley, 1998).
  20. E. Hecht, Optics, 4th ed. (Addison-Wesley, 2002).
  21. P. Harms, R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antennas Propag. 42, 1317–1324 (1994). [CrossRef]
  22. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283(1998). [CrossRef]
  23. Z. Lu, M. Zhao, P. Xie, L. Wu, Y. Yu, P. Zhang, and Z. Yang, “Reflection properties of metallic helical metamaterials,” J. Lightwave Technol. 30, 3050–3054 (2012). [CrossRef]
  24. J. Fischer and M. Wegener, “Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy,” Opt. Mater. Express 1, 614–624 (2011). [CrossRef]
  25. J. Fischer, G. V. Freymann, and M. Wegener, “The materials challenge in diffraction-unlimited direct-laser-writing optical lithography,” Adv. Mater. 22, 3578–3582 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited