OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1392–1396

Enhanced energy upconversion and super-resolved focused spot generation in Tm3+-Yb3+ codoped glass using silica microspheres

Carla Pérez-Rodríguez, Susana Ríos, and Inocencio R. Martín  »View Author Affiliations

JOSA B, Vol. 30, Issue 6, pp. 1392-1396 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (441 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the enhancement of the blue upconversion emission in a Tm3+-Yb3+ codoped fluoroindate glass covered with silica microspheres. Each microsphere produces a photonic nanojet that concentrates the illuminating beam in a tiny region of the glass, increasing the intensity per unit area and so the upconversion emission by a factor of 3. Moreover, the mean size of the emission area has been reduced by a factor of 3 due to the three-photon process involved in the blue emission band. The experimental values of the full width at half-maximum of the emission spots have been found to be in agreement with the theoretical values obtained from finite-difference time-domain simulations.

© 2013 Optical Society of America

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(180.2520) Microscopy : Fluorescence microscopy
(190.7220) Nonlinear optics : Upconversion
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Optical Devices

Original Manuscript: January 25, 2013
Revised Manuscript: April 8, 2013
Manuscript Accepted: April 8, 2013
Published: May 2, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics

Carla Pérez-Rodríguez, Susana Ríos, and Inocencio R. Martín, "Enhanced energy upconversion and super-resolved focused spot generation in Tm3+-Yb3+ codoped glass using silica microspheres," J. Opt. Soc. Am. B 30, 1392-1396 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. S. Maciel, C. B. de Araujo, Y. Messaddeq, and M. A. Aegerter, “Frequency upconversion in Er3+ -doped fluoroindate glasses pumped at 1.48 μm,” Phys. Rev. B 55, 6335–6342 (1997).
  2. T. Hebert, R. Wannemacher, W. Lenth, and R. M. Macfarlane, “Blue and green cw upconversion lasing in Er:YLiF4,” Appl. Phys. Lett. 57, 1727–1729 (1990). [CrossRef]
  3. C. Zhang, L. Sun, Y. Zhang, and C. Yan, “Rare earth upconversion nanophosphors: synthesis, functionalization, and application as biolabels and energy transfer donors,” J. Rare Earths 28, 807–819 (2010). [CrossRef]
  4. L. Aigouy, Y. De Wilde, and M. Mortier, “Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe,” Appl. Phys. Lett. 83, 147–149 (2003). [CrossRef]
  5. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4, 4301–4326 (2012). [CrossRef]
  6. S. F. Lim, R. Riehn, C.-K. Tung, W. S. Ryu, R. Zhuo, J. Dalland, and R. H. Austin, “Upconverting nanophosphors for bioimaging,” Nanotechnology 20, 405701 (2009). [CrossRef]
  7. L. Xiong, T. Yang, Y. Yang, C. Xu, and F. Li, “Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors,” Biomaterials 31, 7078–7085 (2010). [CrossRef]
  8. A. C. Pan, C. del Cañizo, E. Cánovas, N. M. Santos, J. P. Leitão, and A. Luque, “Enhancement of up-conversion efficiency by combining rare earth-doped phosphors with PbS quantum dots,” Sol. Energy Mater. Solar Cells 94, 1923–1926 (2010). [CrossRef]
  9. I. R. Martín, J. Méndez-Ramos, V. D. Rodríguez, J. J. Romero, and J. García-Solé, “Increase of the 800 nm excited Tm3+ blue upconversion emission in fluoroindate glasses by codoping with Yb3+ ions,” Opt. Mater. 22, 327–333 (2003). [CrossRef]
  10. N. Rakov, G. S. Maciel, M. L. Sundheimer, L. de, S. Menezes, A. S. L. Gomes, Y. Messaddeq, F. C. Cassanjes, G. Poirier, and S. J. L. Ribeiro, “Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions,” J. Appl. Phys. 92, 6337–6339 (2002). [CrossRef]
  11. A. Patra, C. S. Friend, R. Kapoor, and P. N. Prasad, “Effect of crystal nature on upconversion luminescence in Er3+:ZrO2 nanocrystals,” Appl. Phys. Lett. 83, 284–286 (2003). [CrossRef]
  12. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16, 15297–15303 (2008). [CrossRef]
  13. S. Lecler, S. Haacke, N. Lecong, O. Crégut, J.-L. Rehspringer, and C. Hirlimann, “Photonic jet driven non-linear optics: example of two-photon fluorescence enhancement by dielectric microspheres,” Opt. Express 15, 4935–4942 (2007). [CrossRef]
  14. D. Gérard, A. Devilez, H. Aouani, B. Stout, N. Bonod, J. Wenger, E. Popov, and H. Rigneault, “Efficient excitation and collection of single-molecule fluorescence close to a dielectric microsphere,” J. Opt. Soc. Am. B 26, 1473–1478 (2009). [CrossRef]
  15. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930–6940 (2008). [CrossRef]
  16. I. R. Martin, V. D. Rodríguez, V. Lavín, and U. R. Rodríguez-Mendoza, “Infrared, blue and ultraviolet upconversion emissions in Yb3+-Tm3+ doped fluorindate glasses,” Spectrochim. Acta A 55, 941–945 (1999). [CrossRef]
  17. J. Méndez-Ramos, F. Lahoz, I. R. Martin, A. B. Soria, A. D. Lozano-Gorrín, and V. D. Rodríguez, “Optical properties and upconversion in Yb3+-Tm3+ co-doped oxyfluoride glasses and glass ceramics,” Mol. Phys. 101, 1057–1065 (2003). [CrossRef]
  18. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  19. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited