OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1397–1401

Enhancing the stability of a continuous-wave terahertz system by photocurrent normalization

Axel Roggenbuck, Malte Langenbach, Komalavalli Thirunavukkuarasu, Holger Schmitz, Anselm Deninger, Iván Cámara Mayorga, Rolf Güsten, Joachim Hemberger, and Markus Grüninger  »View Author Affiliations

JOSA B, Vol. 30, Issue 6, pp. 1397-1401 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (739 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In a continuous-wave terahertz system based on photomixing, the measured amplitude of the terahertz signal shows a variability due to drifts of the responsivities of the photomixers and of the optical power illuminating the photomixers. We report a simple method to substantially reduce this variability. By normalizing the amplitude to the DC photocurrents in both the transmitter and receiver photomixers, we achieve a significant increase in stability. If, e.g., the optical power of one laser is reduced by 10%, the normalized signal is expected to change by only 0.3%, i.e., less than the typical uncertainty due to short-term fluctuations. This stabilization can be particularly valuable for terahertz applications in nonideal environmental conditions outside of a temperature-stabilized laboratory.

© 2013 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(230.0250) Optical devices : Optoelectronics
(040.2235) Detectors : Far infrared or terahertz
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: February 19, 2013
Manuscript Accepted: March 20, 2013
Published: May 2, 2013

Axel Roggenbuck, Malte Langenbach, Komalavalli Thirunavukkuarasu, Holger Schmitz, Anselm Deninger, Iván Cámara Mayorga, Rolf Güsten, Joachim Hemberger, and Markus Grüninger, "Enhancing the stability of a continuous-wave terahertz system by photocurrent normalization," J. Opt. Soc. Am. B 30, 1397-1401 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, “Terahertz photomixing with diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 67, 3844–3846 (1995). [CrossRef]
  2. S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998). [CrossRef]
  3. A. J. Deninger, T. Göbel, D. Schönherr, T. Kinder, A. Roggenbuck, M. Köberle, F. Lison, T. Müller-Wirts, and P. Meissner, “Precisely tunable continuous-wave terahertz source with interferometric frequency control,” Rev. Sci. Instrum. 79, 044702 (2008). [CrossRef]
  4. A. Roggenbuck, H. Schmitz, A. Deninger, I. Cámara Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010). [CrossRef]
  5. S. Matsuura and H. Ito, “Generation of cw terahertz radiation with photomixing,” in Terahertz Optoelectronics, K. Sakai, ed. (Springer-Verlag, 2005), pp. 157–202.
  6. D. Saeedkia and S. Safavi-Naeini, “Terahertz photonics: optoelectronic techniques for generation and detection of terahertz waves,” J. Lightwave Technol. 26, 2409–2423(2008). [CrossRef]
  7. S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 61301–61356 (2011). [CrossRef]
  8. J. E. Bjarnason and E. R. Brown, “Sensitivity measurement and analysis of an ErAs:GaAs coherent photomixing transceiver,” Appl. Phys. Lett. 87, 134105 (2005). [CrossRef]
  9. A. Roggenbuck, K. Thirunavukkuarasu, H. Schmitz, J. Marx, A. Deninger, I. Cámara Mayorga, R. Güsten, J. Hemberger, and M. Grüninger, “Using a fiber stretcher as a fast phase modulator in a continuous wave terahertz spectrometer,” J. Opt. Soc. Am. B 29, 614–620 (2012). [CrossRef]
  10. The responsivities STx and SRx depend on the respective bias voltages (or electric fields). At the receiver, we may safely write SRx∝ETHz,Rx·dSRx/dV (see Fig. 1) in order to separate the terahertz electric field. At the transmitter with its large bias voltage, it is not necessary to assume a linear current-voltage characteristic. This explains the apparent asymmetry of Eq. (3) with respect to STx and dSRx/dV.
  11. I. Cámara Mayorga, E. A. Michael, A. Schmitz, P. van der Wal, R. Güsten, K. Maier, and A. Dewald, “Terahertz photomixing in high energy oxygen- and nitrogen-ion-implanted GaAs,” Appl. Phys. Lett. 91, 031107 (2007). [CrossRef]
  12. Biased uni-travelling-carrier photodiodes have been employed as receivers; see T. Nagatsuma, A. Kaino, S. Hisatake, K. Ajito, H.-J. Song, A. Wakatsuki, Y. Muramoto, N. Kukutsu, and Y. Kado, “Continuous-wave terahertz spectroscopy system based on photodiodes,” PIERS Online 6, 390–394 (2010) (but there the purpose of biasing is not related to normalization).
  13. E. R. Brown, K. A. McIntosh, F. W. Smith, K. B. Nichols, M. J. Manfra, C. L. Dennis, and J. P. Mattia, “Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer,” Appl. Phys. Lett. 64, 3311–3313 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited