OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1402–1409

Thermal limitations of volume Bragg gratings used in lasers for spectral control

Staffan Tjörnhammar, Björn Jacobsson, Valdas Pasiskevicius, and Fredrik Laurell  »View Author Affiliations


JOSA B, Vol. 30, Issue 6, pp. 1402-1409 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001402


View Full Text Article

Enhanced HTML    Acrobat PDF (1083 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we present experiments and calculations of the property changes of a highly reflecting volume Bragg grating (VBG) when it is used as a laser cavity mirror. A small absorption of the reflected laser beam resulted in a laser output power roll-off, increased coupling through the VBG, and a change of the spectrum from a single to a double peak at high power. The simulations revealed that an inhomogeneous temperature distribution deformed the grating such that the diffraction efficiency was reduced and the light penetrated deeper into the VBG, which accelerated the deteriorating effects. We extrapolated the power limit found in our investigations for various beam radii and absorption coefficients.

© 2013 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(090.7330) Holography : Volume gratings
(140.6810) Lasers and laser optics : Thermal effects
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 18, 2013
Manuscript Accepted: March 30, 2013
Published: May 2, 2013

Citation
Staffan Tjörnhammar, Björn Jacobsson, Valdas Pasiskevicius, and Fredrik Laurell, "Thermal limitations of volume Bragg gratings used in lasers for spectral control," J. Opt. Soc. Am. B 30, 1402-1409 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-6-1402


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Efimov, L. Glebov, L. Glebova, K. Richardson, and V. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38, 619–627 (1999). [CrossRef]
  2. B. Volodin, S. Dolgy, E. Melnik, E. Downs, J. Shaw, and V. Ban, “Wavelength stabilization and spectral narrowing of high power multimode laser diodes and arrays by use of volume Bragg gratings,” Opt. Lett. 29, 1891–1893 (2004). [CrossRef]
  3. B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Tunable single-longitudinal-mode ErYb:glass laser locked by a bulk glass Bragg grating,” Opt. Lett. 31, 1663–1665 (2006). [CrossRef]
  4. T. Chung, A. Rapaport, V. Smirnov, L. Glebov, M. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31, 229–231 (2006). [CrossRef]
  5. P. Jelger and F. Laurell, “Efficient narrow-linewidth volume-Bragg grating-locked Nd:fiber laser,” Opt. Express 15, 11336–11340 (2007). [CrossRef]
  6. B. Jacobsson, M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Narrowband bulk Bragg grating optical parametric oscillator,” Opt. Lett. 30, 2281–2283 (2005). [CrossRef]
  7. O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, and L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15, 344–353 (2009). [CrossRef]
  8. K.-H. Liao, M.-Y. Cheng, E. Flecher, V. Smirnov, L. Glebov, and A. Galvanauskas, “Large aperture chirped volume Bragg grating based CPA system,” Opt. Express 15, 4876–4882 (2007). [CrossRef]
  9. B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Single-longitudinal-mode Nd-laser with a Bragg grating Fabry–Perot cavity,” Opt. Express 14, 9284–9292 (2006). [CrossRef]
  10. T. Waritanant, and T.-Y. Chung, “Influence of minute self-absorption of a volume Bragg grating used as a laser mirror,” IEEE J. Quantum Electron. 47, 390–397 (2011). [CrossRef]
  11. J. Lumeau, L. Glebova, and L. B. Glebov, “Influence of UV-exposure on the crystallization and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 354, 425 (2008). [CrossRef]
  12. O. G. Andrusyak, “Dense spectral beam combining with volume Bragg gratings in photothermo-refractive glass,” Ph.D. thesis, University of Central Florida, 2009.
  13. J. Lumeau, L. Glebova, and L. Glebov, “Near-IR absorption in high-purity photothermorefractive glass and holographic optical elements: measurement and application for high-energy lasers,” Appl. Opt. 50, 5905–5911 (2011). [CrossRef]
  14. O. M. Efimov, L. B. Glebov, S. Papernov, and A. W. Schmid, “Laser-induced damage of photo-thermo-refractive glasses for optical holographic element writing,” Proc. SPIE 3578, 564–575 (1999). [CrossRef]
  15. I. V. Ciapurin, L. B. Glebov, L. N. Glebova, V. I. Smirnov, and E. V. Rotari, “Incoherent combining of 100 W Yb-fiber laser beams by PTR Bragg grating,” Proc. SPIE 4974, 209–219 (2003). [CrossRef]
  16. J. W. Kim, P. Jelger, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power and wavelength-tunable operation of an Er, Yb fiber laser using a volume Bragg grating,” Opt. Lett. 33, 1204–1206 (2008). [CrossRef]
  17. J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Quasi-two-level Yb:KYW laser with a volume Bragg grating,” Opt. Express 15, 13930–13935 (2007). [CrossRef]
  18. P. Jelger, P. Wang, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection,” Opt. Express 16, 9507–9512 (2008). [CrossRef]
  19. H. Shu and M. Bass, “Modeling the reflection of a laser beam by a deformed highly reflective volume Bragg grating,” Appl. Opt. 46, 2930–2938 (2007). [CrossRef]
  20. H. Shu, S. Mokhov, B. Y. Zeldovich, and M. Bass, “More on analyzing the reflection of a laser beam by a deformed highly reflective volume Bragg grating using iteration of the beam propagation method,” Appl. Opt. 48, 22–27 (2009). [CrossRef]
  21. H. Shu, “Split step solution in the iteration of the beam propagation method for analyzing Bragg gratings,” Appl. Opt. 48, 4794–4800 (2009). [CrossRef]
  22. K. I. White and J. E. Midwinter, “An improved technique for the measurement of low optical absorption losses in bulk glass,” Opto-electronics 5, 323–334 (1973). [CrossRef]
  23. A. E. Siegman, Lasers (University Science Books, 1986).
  24. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov, and G. Huber, “Pulsed laser operation of Yb-doped KY(WO4)2and KGd(WO4)2,” Opt. Lett. 22, 1317–1319 (1997). [CrossRef]
  25. K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peters, J. J. Romero, S. Kutovoi, J. Speiser, and A. Giesen, “Highly Yb-doped oxides for thin-disc lasers,” J. Cryst. Growth 275, 135–140 (2005). [CrossRef]
  26. B. Jacobsson, “Experimental and theoretical investigation of a volume-Bragg-grating-locked Yb:KYW laser at selected wavelengths,” Opt. Express 16, 6443–6454 (2008). [CrossRef]
  27. J. Hong, W. Huang, and T. Makino, “On the transfer matrix method for distributed-feedback waveguide devices,” J. Lightwave Technol. 10, 1860–1868 (1992). [CrossRef]
  28. COMSOL Inc., Stress-Optical Effects in a Silica-on-Silicon Waveguide (COMSOL, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited