OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1410–1419

Spectroscopic properties of ytterbium, praseodymium-codoped fluorozirconate glass for laser emission at 3.6 μm

Laércio Gomes and Stuart D. Jackson  »View Author Affiliations

JOSA B, Vol. 30, Issue 6, pp. 1410-1419 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (955 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Excitation of the F27/2F25/2 transition of the Yb3+ ion in Yb3+, Pr3+-doped fluorozirconate glass at 974 nm results in efficient excitation of the G41 level of Pr3+ ion that in turn emits in the middle infrared at 3.6μm. The energy transfer (ET) process Yb3+(F25/2)Pr3+(G41) is assisted by fast excitation migration among the Yb3+ ions. An upconversion process involving ET from the F25/2 level to the G41 excited state populates the P03 excited state that produces emission at 481, 521, 603, 636, and 717 nm. A study of the behavior of the fluorescence from the G41 level at 1325 nm and from the P03 level at 603 nm allowed the estimation of the ET rate constants for the processes involved after short-pulsed laser excitation at 974 nm. A rate-equation model was employed to evaluate the population inversion relating to the G41F43 transition of the Pr3+ ion at 3.6 μm under continuous wave pumping.

© 2013 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(300.0300) Spectroscopy : Spectroscopy

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 13, 2012
Revised Manuscript: March 7, 2013
Manuscript Accepted: March 29, 2013
Published: May 2, 2013

Laércio Gomes and Stuart D. Jackson, "Spectroscopic properties of ytterbium, praseodymium-codoped fluorozirconate glass for laser emission at 3.6 μm," J. Opt. Soc. Am. B 30, 1410-1419 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallee, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett. 36, 1104 (2011). [CrossRef]
  2. S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 μm,” Opt. Lett. 34, 2327 (2009). [CrossRef]
  3. J. Schneider, C. Carbonnier, and U.B. Unrau, “Characterization of a Ho3+-doped fluoride fiber laser with a 3.9 μm emission wavelength,” Appl. Opt. 36, 8595 (1997). [CrossRef]
  4. A.A. Kaminskii, K. Kurbanov, and T. V. Uvarova, “Stimulated radiation from single-crystals of BaYb2F8Pr(3+),” Izv. Akad. Nauk SSSR, Sev. Neorgan. Matter 23, 1049 (1987).
  5. A. A. Kaminskii, K. Kurbanov, and A. V. Pelevin, “New channels for stimulated-emission of Pr(3+) ions in tetragonal fluorides LiRF4 with the structure of scheelite,” Izv. Akad. Nauk. SSSR, Sev. Neorgan. Matter 23, 1934 (1987).
  6. A. A. Kaminskii, “Progress in praseodymium crystalline lasers emitting in the visible,” in Advanced Solid State Lasers, A. A. Pinto and T. Y. Fan, eds., Vol. 15, OSA Proceedings Series(Optical Society of America, 1993), pp. 266–270.
  7. S. Kück, K. Sebald, A. Diening, E. Heumann, E. Mix, and G. Huber, “Energy transfer processes in Pr, Yb-doped crystals,” in OSA Trends in Optics and Photonics, Martin M. Fejer, Hagop Injeyan, and Ursula Keller, eds., Vol. 26, Advanced Solid State Lasers (Optical Society of America, 1999), pp. 658–663.
  8. A. I. Burshtein, “Jump mechanism of energy transfer,” Soviet Phys. JETP 35, 882 (1972).
  9. L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messaddeq, “Dynamics of Tm–Ho energy transfer and deactivation of the F43 low level of thulium in fluorozirconate glasses,” J. Appl. Phys. 95, 5451 (2004). [CrossRef]
  10. R. C. Powell, “Nonradiative energy-transfer: multistep process,” in Physics of Solid-State Laser Materials (Springer, 1998), pp. 193–203.
  11. W. Seeber, E. A. Downing, L. Hesselink, M. M. Fejer, and D. Ehrt, “Pr3+-doped fluoride glasses,” J. Non-Crystalline Solids 189, 218 (1995).
  12. W. G. Jordan, Animesh Jha, M. Lunt, S. T. Davey, R. Wyatt, and W. J. Rothwell, “The optical properties of ZrF4-based glasses with extended Pr3+:G14→H35 fluorescence lifetimes,” J. Non-Crystalline Solids 184, 5 (1995).
  13. L. Gomes, A. F. H. Librantz, F. H. Jagosich, L. A. W. Alves, I. M. Ranieri, and S. L. Baldochi, “Energy transfer rates and population inversion of I411/2 excited state of Er3+ investigated by means of numerical solutions of the rate equations system in Er:LiYF4 crystal,” J. Appl. Phys. 106, 103508(2009). [CrossRef]
  14. A. F. H. Librantz, L. Gomes, L. C. Courrol, I. M. Ranieri, and S. L. Baldochi, “Population inversion of G14 excited state of Tm3+ investigated by means of numerical solutions of the rate equations system in Yb:Tm:Nd:LiYF4 crystal,” J. Appl. Phys. 105, 113503 (2009). [CrossRef]
  15. H. Marconi da Silva, M. D. Linhares, A. F. H. Librantz, L. Gomes, L. C. Courrol, S. L. Baldochi, and I. M. Ranieri, “Energy transfer rates and population inversion investigation of G14 and D12excited states of Tm3+ in Yb:Tm:Nd:KY3F10 crystals,” J. Appl. Phys. 109, 083533 (2011). [CrossRef]
  16. A. F. H. Librantz, S. D. Jackson, F. H. Jagosich, L. Gomes, G. Poirier, S. J. L. Ribeiro, and Y. Messaddeq, “Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses,” J. Appl. Phys. 101, 123111 (2007). [CrossRef]
  17. L. Gomes, M. Oermann, H. E. Heidepriem, D. Ottaway, T. Monro, A. F. H. Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110, 083111 (2011). [CrossRef]
  18. A. B. Arauzo, R. Cases, and R. Alcalá, “Optical absorption, photoluminescence and cross relaxation of Pr3+ ion in some fluoride glasses,” Phys. Chem. Glasses 35, 202(1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited