OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1452–1461

Modal perspective on the transverse Anderson localization of light in disordered optical lattices

Salman Karbasi, Karl W. Koch, and Arash Mafi  »View Author Affiliations


JOSA B, Vol. 30, Issue 6, pp. 1452-1461 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001452


View Full Text Article

Enhanced HTML    Acrobat PDF (1200 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a detailed analysis of the transverse Anderson localization of light in a one-dimensional disordered optical lattice in the language of transversely localized and longitudinally propagating eigenmodes. The modal analysis allows us to explore localization behavior of a disordered lattice waveguide independent of the properties of the external excitation. Various localization-related phenomena, such as the periodic revival of a propagating Anderson-localized beam, are easily explained in modal language. We characterize the localization strength by the average width of the guided modes and carry out a detailed analysis of localization behavior as a function of the optical and geometrical parameters of the disordered lattice. We also show that in order to obtain a minimum average mode width, the average width of the individual random sites in the disordered lattice must be larger than the wavelength of the light by approximately a factor of two or more, and the optimum site width for the maximum localization depends on the design parameters of the disordered lattice.

© 2013 Optical Society of America

OCIS Codes
(230.7400) Optical devices : Waveguides, slab
(290.4210) Scattering : Multiple scattering

ToC Category:
Scattering

History
Original Manuscript: January 23, 2013
Revised Manuscript: March 9, 2013
Manuscript Accepted: April 9, 2013
Published: May 6, 2013

Citation
Salman Karbasi, Karl W. Koch, and Arash Mafi, "Modal perspective on the transverse Anderson localization of light in disordered optical lattices," J. Opt. Soc. Am. B 30, 1452-1461 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-6-1452


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109, 1492–1505 (1958). [CrossRef]
  2. A. D. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty years of Anderson localization,” Phys. Today 62(8), 24–29 (2009). [CrossRef]
  3. S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984). [CrossRef]
  4. P. W. Anderson, “The question of classical localization: a theory of white paint?” Philos. Mag. B 52, 505–509 (1985). [CrossRef]
  5. S. John, “Localization of light,” Phys. Today 44(5), 32–40 (1991). [CrossRef]
  6. A. A. Chabanov, M. Stoytchev, and A. Z. Genack, “Statistical signatures of photon localization,” Nature 404, 850–853(2000). [CrossRef]
  7. T. Pertsch, U. Peschel, J. Kobelke, K. Schuster, H. Bartelt, S. Nolte, A. Tunnermann, and F. Lederer, “Nonlinearity and disorder in fiber arrays,” Phys. Rev. Lett. 93, 053901 (2004). [CrossRef]
  8. P. A. Lee and T. V. Ramakrishnan, “Disordered electronic systems,” Rev. Mod. Phys. 57, 287–337 (1985). [CrossRef]
  9. M. Leonetti and C. Lopez, “Measurement of transport mean-free path of light in thin systems,” Opt. Lett. 36, 2824–2826 (2011). [CrossRef]
  10. H. De Raedt, Ad. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62, 47–50 (1989). [CrossRef]
  11. R. G. S. El-Dardiry, S. Faez, and Ad. Lagendijk, “Snapshots of Anderson localization beyond the ensemble average,” Phys. Rev. B 86, 125132 (2012). [CrossRef]
  12. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100, 013906 (2008). [CrossRef]
  13. A. Szameit, Y. V. Kartashov, P. Zeil, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, A. Tunnermann, V. A. Vysloukh, and L. Torner, “Wave localization at the boundary of disordered photonic lattices,” Opt. Lett. 35, 1172–1174 (2010). [CrossRef]
  14. L. Martin, G. Di Giuseppe, A. Perez-Leija, R. Keil, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, A. F. Abouraddy, D. N. Christodoulides, and B. E. A. Saleh, “Anderson localization in optical waveguide arrays with off-diagonal coupling disorder,” Opt. Express 19, 13636–13646 (2011). [CrossRef]
  15. S. Ghosh, N. D. Psaila, R. R. Thomson, B. P. Pal, R. K. Varshney, and A. K. Kar, “Ultrafast laser inscribed waveguide lattice in glass for direct observation of transverse localization of light,” Appl. Phys. Lett. 100, 101102 (2012). [CrossRef]
  16. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446, 52–55 (2007). [CrossRef]
  17. S. Karbasi, C. Mirr, P. Yarandi, R. Frazier, K. W. Koch, and A. Mafi, “Observation of transverse Anderson localization in an optical fiber,” Opt. Lett. 37, 2304–2306 (2012). [CrossRef]
  18. S. Karbasi, T. Hawkins, J. Ballato, K. W. Koch, and A. Mafi, “Transverse Anderson localization in a disordered glass optical fiber,” Opt. Mater. Express 2, 1496–1503 (2012). [CrossRef]
  19. S. Karbasi, C. R. Mirr, P. G. Yarandi, R. J. Frazier, K. W. Koch, and A. Mafi, “Detailed investigation of the impact of the fiber design parameters on the transverse Anderson localization of light in disordered optical fibers,” Opt. Mater. Express 20, 18692–18706 (2012). [CrossRef]
  20. S. Karbasi, K. W. Koch, and A. Mafi, “Multiple-beam propagation in an Anderson localized optical fiber,” Opt. Express 21, 305–313 (2013). [CrossRef]
  21. D. M. Jovic, Y. S. Kivshar, C. Denz, and M. R. Belic, “Anderson localization of light near boundaries of disordered photonic lattices,” Phys. Rev. A 83, 033813 (2011). [CrossRef]
  22. Y. V. Kartashov, V. V. Konotop, V. A. Vysloukh, and L. Torner, “Light localization in nonuniformly randomized lattices,” Opt. Lett. 37, 286–288 (2012). [CrossRef]
  23. M. V. Berry and S. Klein, “Transparent mirrors: rays, waves, and localization,” Eur. J. Phys. 18, 222–228 (1997). [CrossRef]
  24. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behavior in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003). [CrossRef]
  25. J. B. Pendry, “Off-diagonal disorder and 1D localization,” J. Phys. C 15, 5773–5778 (1982). [CrossRef]
  26. C. M. Soukoulis and E. N. Economou, “Off-diagonal disorder in one-dimensional systems,” Phys. Rev. B 24, 5698–5702(1981). [CrossRef]
  27. T. A. Lenahan, “Calculation of modes in an optical fiber using the finite element method and EISPACK,” Bell Syst. Tech. J. 62, 2663–2694 (1983).
  28. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Disorder-induced soliton transmission in nonlinear photonic lattices,” Opt. Lett. 36, 466 (2011). [CrossRef]
  29. A. Mafi, P. Hofmann, C. Salvin, and A. Schülzgen, “Low-loss coupling between two single-mode optical fibers with different mode-field diameters using a graded-index multimode optical fiber,” Opt. Lett. 36, 3596–3598 (2011). [CrossRef]
  30. I. M. Vellekoop, Ad. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322(2010). [CrossRef]
  31. R. Keil, Y. Lahini, Y. Shechtman, M. Heinrich, R. Pugatch, F. Dreisow, A. Tunnermann, S. Nolte, and A. Szameit, “Perfect imaging through a disordered waveguide lattice,” Opt. Lett. 37, 809–811 (2012). [CrossRef]
  32. J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, “Periodic spontaneous collapse and revival in a simple quantum model,” Phys. Rev. Lett. 44, 1323–1326 (1980). [CrossRef]
  33. Z. D. Gaeta and C. R. Stroud, “Classical and quantum mechanical dynamics of quasiclassical state of a hydrogen atom,” Phys. Rev. A 42, 6308–6313 (1990). [CrossRef]
  34. A. A. Karatsuba and E. A. Karatsuba, “A resummation formula for collapse and revival in the Jaynes Cummings model,” J. Phys. A 42, 195304 (2009). [CrossRef]
  35. A. Mafi and J. V. Moloney, “Beam quality of photonic crystal fibers,” J. Lightwave Technol. 23, 2267–2270 (2005). [CrossRef]
  36. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics?” Phys. Rev. Lett. 87, 167401 (2001). [CrossRef]
  37. A. Mafi, “Impact of lattice-shape moduli on band structure of photonic crystals,” Phys. Rev. B 77, 115140 (2008). [CrossRef]
  38. C. M. Soukoulis and E. N. Economou, “Electronic localization in disordered systems,” Waves random media 9, 255–269 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited