OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1473–1478

Investigation of one-dimensional photonic bandgap structures containing lossy double-negative metamaterials through the Bloch impedance

Fenghua Shi, Yihang Chen, Peng Han, and Costas M. Soukoulis  »View Author Affiliations


JOSA B, Vol. 30, Issue 6, pp. 1473-1478 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001473


View Full Text Article

Enhanced HTML    Acrobat PDF (832 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Bloch impedance is studied and used to understand the properties of the absorption loss in one-dimensional photonic crystals (PCs) composed of air and metal-based double-negative metamaterials. We find that as the frequency increases across the zero-n¯ gap of the considered structures, the modulus of the Bloch impedance always decreases from a maximum to a minimum value. On the other hand, the frequency dependence of the phase angle of the Bloch impedance is greatly influenced by the ratio of the electric to the magnetic damping coefficient γe/γm of the metamaterials. When the phase angle of the Bloch impedance reaches maximum inside the zero-n¯ gap, the impedance mismatch between the incident medium and the considered PC becomes greatest, the reflection will be strongest and a minimum absorption will be observed. As γe/γm increases, the frequency corresponding to the minimum absorption shifts from the lower to the upper gap edge. We also show that the main characteristics of both the Bloch impedance and the absorption loss are insensitive to the geometrical parameters. Our study offers a valuable reference in the designs of zero-n¯ gap with optimized properties.

© 2013 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Materials

History
Original Manuscript: March 1, 2013
Manuscript Accepted: March 27, 2013
Published: May 6, 2013

Citation
Fenghua Shi, Yihang Chen, Peng Han, and Costas M. Soukoulis, "Investigation of one-dimensional photonic bandgap structures containing lossy double-negative metamaterials through the Bloch impedance," J. Opt. Soc. Am. B 30, 1473-1478 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-6-1473


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  3. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).
  4. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003). [CrossRef]
  5. P. Tran, “Optical switching with a nonlinear photonic crystal: a numerical study,” Opt. Lett. 21, 1138–1140 (1996). [CrossRef]
  6. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449–458 (2007). [CrossRef]
  7. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  8. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef]
  9. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef]
  10. J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003). [CrossRef]
  11. H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386–5388 (2003). [CrossRef]
  12. Y. H. Chen, J. W. Dong, and H. Z. Wang, “Conditions of near-zero dispersion of defect modes in one-dimensional photonic crystals containing negative-index materials,” J. Opt. Soc. Am. B 23, 776–781 (2006). [CrossRef]
  13. H. Daninthe, S. Foteinopoulou, and C. M. Soukoulis, “Omni-reflectance and enhanced resonant tunneling from multilayers containing left-handed materials,” Photon. Nanostr. Fundam. Appl. 4, 123–131 (2006). [CrossRef]
  14. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007). [CrossRef]
  15. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007). [CrossRef]
  16. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011). [CrossRef]
  17. A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92, 5930–5935 (2002). [CrossRef]
  18. B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010). [CrossRef]
  19. D. S. Bethune, “Optical harmonic generation and mixing in multilayer media: analysis using optical transfer matrix techniques,” J. Opt. Soc. Am. B 6, 910–916 (1989). [CrossRef]
  20. B. Gralak, S. Enoch, and G. Tayeb, “Anomalous refractive properties of photonic crystals,” J. Opt. Soc. Am. A 17, 1012–1020 (2000). [CrossRef]
  21. Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003). [CrossRef]
  22. A. Yariv and P. Yeh, Optical Waves in Crystal, Propagation and Control of Laser Radiation (Wiley, 1984).
  23. P. Markoš and C. M. Soukoulis, Wave Propagation: From Electrons to Photonic crystals and Left-handed Materials (Princeton, 2008).
  24. D. M. Pozar, Microwave Engineering (Wiley, 1998).
  25. R. Biswas, Z. Y. Li, and K. M. Ho, “Impedance of photonic crystals and photonic crystal waveguides,” Appl. Phys. Lett. 84, 1254–1256 (2004). [CrossRef]
  26. F. J. Lawrence, L. C. Botten, K. B. Dossou, C. M. de Sterke, and R. C. McPhedran, “Impedance of square and triangular lattice photonic crystals,” Phys. Rev. A 80, 023826 (2009). [CrossRef]
  27. S. Boscolo, M. Midrio, and T. F. Krauss, “Y junctions in photonic crystal channel waveguides: high transmission and impedance matching,” Opt. Lett. 27, 1001–1003 (2002). [CrossRef]
  28. Q. V. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett. 95, 061105 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited