OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1486–1495

Differential cavity ring-down spectroscopy

Jérémie Courtois, Katarzyna Bielska, and Joseph T. Hodges  »View Author Affiliations

JOSA B, Vol. 30, Issue 6, pp. 1486-1495 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (854 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-precision cavity-enhanced spectroscopic measurements are commonly compromised by interferences caused by external etalons. Here, we present the differential cavity ring-down spectroscopy (D-CRDS) technique for reducing these perturbations. We discuss how etalons are caused by coupled-cavity interactions between the primary ring-down cavity and other optical elements of the experiment, and we model and experimentally verify how drift in cavity base loss correlates with barometric pressure and laboratory temperature. D-CRDS measurements of near-infrared CO2 spectra that are insensitive to etalon-induced distortions are then presented. Based on an average of 100 spectra, these results yield a signal-to-noise ratio of 170,0001 and a minimum detectable absorption coefficient of 4×1012cm1.

© 2013 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6390) Spectroscopy : Spectroscopy, molecular

ToC Category:

Original Manuscript: December 19, 2012
Revised Manuscript: February 19, 2013
Manuscript Accepted: March 7, 2013
Published: May 9, 2013

Jérémie Courtois, Katarzyna Bielska, and Joseph T. Hodges, "Differential cavity ring-down spectroscopy," J. Opt. Soc. Am. B 30, 1486-1495 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998). [CrossRef]
  2. R. W. Fox and L. Hollberg, “Role of spurious reflections in ring-down spectroscopy,” Opt. Lett. 27, 1833–1835 (2002). [CrossRef]
  3. J. Courtois and J. T. Hodges, “Coupled-cavity ring-down spectroscopy technique,” Opt. Lett. 37, 3354–3356 (2012). [CrossRef]
  4. D. Romanini and K. K. Lehmann, “Ring-down cavity absorption-spectroscopy of the very weak HCN overtone bands with 6, 7, and 8 stretching quanta,” J. Chem. Phys. 99, 6287–6301 (1993). [CrossRef]
  5. S. Kassi, D. Romanini, A. Campargue, and B. Bussery–Honvault, “Very high sensitivity CW-cavity ring-down spectroscopy: application to the a1Δg−X3Σg−(1)O2 band near 1.58 μm,” Chem. Phys. Lett. 409, 281–287 (2005). [CrossRef]
  6. D. A. Long, D. K. Havey, M. Okumura, H. M. Pickett, C. E. Miller, and J. T. Hodges, “Laboratory measurements and theoretical calculations of O2A band electric quadrupole transitions,” Phys. Rev. A 80, 042513 (2009). [CrossRef]
  7. S. Kassi and A. Campargue, “Cavity ring down spectroscopy with 5×10−13  cm−1 sensitivity,” J. Chem. Phys. 137, 234201 (2012). [CrossRef]
  8. A. Cygan, D. Lisak, S. Wójtewicz, J. Domysławska, J. T. Hodges, R. S. Trawiński, and R. Ciuryło, “High-signal-to-noise-ratio laser technique for accurate measurements of spectral line parameters,” Phys. Rev. A 85, 022508 (2012). [CrossRef]
  9. P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, and F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A 60, 1685–1705 (2004). [CrossRef]
  10. P. Werle and S. Lechner, “Stark-modulation-enhanced FM-spectroscopy,” Spectrochim. Acta A 55, 1941–1955 (1999). [CrossRef]
  11. R. Grilli, G. Méjean, C. Abd Alrahman, I. Ventrilllard, S. Kassi, and D. Romanini, “Cavity-enhance multiplexed comb spectroscopy down to the photon shot noise,” Phys. Rev. A 85, 051804 (2012). [CrossRef]
  12. A. Foltynowicz, I. Silander, and O. Axner, “Reduction of background signals in fiber-based NICE-OHMS,” J. Opt. Soc. Am. B 28, 2797–2805 (2011). [CrossRef]
  13. A. O. O’Keefe and D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988). [CrossRef]
  14. H. F. Huang and K. K. Lehmann, “Long-term stability in continuous wave cavity ringdown spectroscopy experiments,” Appl. Opt. 49, 1378–1387 (2010). [CrossRef]
  15. J. Ye and J. L. Hall, “Cavity ringdown heterodyne spectroscopy: high sensitivity with microwatt light power,” Phys. Rev. A 61, 061802 (2000). [CrossRef]
  16. D. A. Long, A. Cygan, R. D. van Zee, M. Okumura, C. E. Miller, D. Lisak, and J. T. Hodges, “Frequency-stabilized cavity ring-down spectroscopy,” Chem. Phys. Lett. 536, 1–8 (2012). [CrossRef]
  17. J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004). [CrossRef]
  18. D. W. Allan, “Statistics of atomic frequency standards,” Pr. Inst. Electr. Elect. 54, 221–230 (1966). [CrossRef]
  19. H. Huang and K. K. Lehmann, “Noise in cavity ring-down spectroscopy caused by transverse mode coupling,” Opt. Express 15, 8745–8759 (2007). [CrossRef]
  20. D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc. Ind. Appl. Math. 11, 431–441 (1963). [CrossRef]
  21. L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223 (1961). [CrossRef]
  22. B. Lance, G. Blanquet, J. Walrand, and J. P. Bouanich, “On the speed-dependent hard collision lineshape models: application to C2H2 perturbed by Xe,” J. Mol. Spectrosc. 185, 262–271 (1997). [CrossRef]
  23. D. Priem, F. Rohart, J. M. Colmont, G. Wlodarczak, and J. P. Bouanich, “Lineshape study of the J=3←2 rotational transition of CO perturbed by N2 and O2,” J. Mol. Struct. 517, 435–454 (2000). [CrossRef]
  24. J. Ward, J. Cooper, and E. W. Smith, “Correlation effects in theory of combined Doppler and pressure broadening—I. Classical theory,” J. Quant. Spectrosc. Radiat. Transfer 14, 555–590 (1974).
  25. R. Ciuryło, “Shapes of pressure- and Doppler-broadened spectral lines in the core and near wings,” Phys. Rev. A 58, 1029–1039 (1998). [CrossRef]
  26. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  27. D. A. Long, K. Bielska, D. Lisak, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “The air-broadened, near-infrared CO2 line shape in the spectrally isolated regime: evidence of simultaneous Dicke narrowing and speed dependence,” J. Chem. Phys. 135, 064308 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited