OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1503–1512

Modeling multilayer thin film interference effects in interface-specific coherent nonlinear optical spectroscopies

Daniel B. O’Brien and Aaron M. Massari  »View Author Affiliations

JOSA B, Vol. 30, Issue 6, pp. 1503-1512 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (537 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a generalized model to describe thin film interference in interface-specific nonlinear optical spectroscopies of ideal isotropic stratified systems that enables the separation of this effect from the individual interfacial nonlinear responses. The model utilizes a property of the transfer matrix formalism that allows for simplification of an arbitrary layered system to a single layer with newly defined coefficients of reflection and transmission. In addition to the already well known internal transfer coefficients that relate incident fields to internal fields, we define external transfer coefficients that describe how internally generated fields propagate out of the system. By applying the usual boundary conditions we are able to analytically describe the local and induced fields immediately adjacent to an arbitrary interface, followed by transfer of the generated fields out of the system. The model provides a complete and easily implemented approach to calculating the observables from interface-specific spectroscopies on arbitrary layered thin film systems in a concise way.

© 2013 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.7220) Nonlinear optics : Upconversion
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(300.6420) Spectroscopy : Spectroscopy, nonlinear
(300.6490) Spectroscopy : Spectroscopy, surface
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:

Original Manuscript: February 6, 2013
Revised Manuscript: April 11, 2013
Manuscript Accepted: April 11, 2013
Published: May 9, 2013

Daniel B. O’Brien and Aaron M. Massari, "Modeling multilayer thin film interference effects in interface-specific coherent nonlinear optical spectroscopies," J. Opt. Soc. Am. B 30, 1503-1512 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  2. X. D. Zhu, H. Suhr, and Y. R. Shen, “Surface vibrational spectroscopy by infrared-visible sum frequency generation,” Phys. Rev. B 35, 3047–3050 (1987). [CrossRef]
  3. Z. Chen, Y. R. Shen, and G. A. Somorjai, “Studies of polymer surfaces by sum frequency generation vibrational spectroscopy,” Annu. Rev. Phys. Chem. 53, 437–465 (2002). [CrossRef]
  4. F. Vidal and A. Tadjeddine, “Sum-frequency generation spectroscopy of interfaces,” Rep. Prog. Phys. 68, 1095–1127 (2005). [CrossRef]
  5. A. Ghosh, M. Smits, M. Sovago, J. Bredenbeck, M. Muller, and M. Bonn, “Ultrafast vibrational dynamics of interfacial water,” Chem. Phys. 350, 23–30 (2008). [CrossRef]
  6. T. C. Anglin, D. B. O’Brien, and A. M. Massari, “Monitoring the charge accumulation process in polymeric field-effect transistors via in situ sum frequency generation,” J. Phys. Chem. C 114, 17629–17637 (2010). [CrossRef]
  7. D. B. O’Brien, T. C. Anglin, and A. M. Massari, “Surface chemistry and annealing-driven interfacial changes in organic semiconducting thin films on silica surfaces,” Langmuir 27, 13940–13949 (2011). [CrossRef]
  8. G. Li, A. Dhinojwala, and M. S. Yeganeh, “Interfacial structure and melting temperature of alcohol and alkane molecules in contact with polystyrene films,” J. Phys. Chem. B 113, 2739–2747 (2009). [CrossRef]
  9. G. P. Harp, K. S. Gautam, and A. Dhinojwala, “Probing polymer/polymer interfaces,” J. Am. Chem. Soc. 124, 7908–7909 (2002). [CrossRef]
  10. K. S. Gautam, A. D. Schwab, A. Dhinojwala, D. Zhang, S. M. Dougal, and M. S. Yeganeh, “Molecular structure of polystyrene at air/polymer and solid/polymer interfaces,” Phys. Rev. Lett. 85, 3854–3857 (2000). [CrossRef]
  11. A. G. Lambert, D. J. Neivandt, A. M. Briggs, E. W. Usadi, and P. B. Davies, “Interference effects in sum frequency spectra from monolayers on composite dielectric/metal substrates,” J. Phys. Chem. B 106, 5461–5469 (2002). [CrossRef]
  12. M. Feller, W. Chen, and Y. Shen, “Investigation of surface-induced alignment of liquid-crystal molecules by optical second-harmonic generation,” Phys. Rev. A 43, 6778–6792 (1991). [CrossRef]
  13. C. Hirose, H. Ishida, K. Iwatsu, N. Watanabe, and J. Kubota, “In situ SFG spectroscopy of film growth. I. General formulation and the analysis of the signal observed during the deposition,” Chem. Phys. 108, 5948–5956 (1998). [CrossRef]
  14. Y. Tong, Y. Zhao, N. Li, M. Osawa, P. B. Davies, and S. Ye, “Interference effects in the sum frequency generation spectra of thin organic films. I. Theoretical modeling and simulation,” J. Chem. Phys. 133, 034704 (2010). [CrossRef]
  15. X. Lu, M. L. Clarke, D. Li, X. Wang, G. Xue, and Z. Chen, “A sum frequency generation vibrational study of the interference effect in poly(n-butyl methacrylate) thin films sandwiched between silica and water,” J. Phys. Chem. C 115, 13759–13767 (2011). [CrossRef]
  16. E. H. G. Backus, N. Garcia-Araez, M. Bonn, and H. J. Bakker, “On the role of Fresnel factors in sum-frequency generation spectroscopy of metal–water and metal-oxide–water interfaces,” J. Phys. Chem. C 116, 23351–23361 (2012). [CrossRef]
  17. G. Li, A. Dhinojwala, and M. S. Yeganeh, “Interference effect from buried interfaces investigated by angular-dependent infrared–visible sum frequency generation technique,” J. Phys. Chem. C 115, 7554–7561 (2011). [CrossRef]
  18. J. E. Sipe, “New Green-function formalism for surface optics,” J. Opt. Soc. Am. B 4, 481 (1987). [CrossRef]
  19. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  20. N. Hashizume, M. Ohashi, T. Kondo, and R. Ito, “Optical harmonic generation in multilayered structures: a comprehensive analysis,” J. Opt. Soc. Am. B 12, 1894 (1995). [CrossRef]
  21. P. T. Wilson, K. A. Briggman, W. E. Wallace, J. C. Stephenson, and L. J. Richter, “Selective study of polymer/dielectric interfaces with vibrationally resonant sum frequency generation via thin-film interference,” Appl. Phys. Lett. 80, 3084–3086 (2002). [CrossRef]
  22. M. Born, E. Wolf, and A. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
  23. Z. Knittl, Optics of Thin Films (Wiley, 1976).
  24. Y. R. Shen, “Optical second harmonic generation at interfaces,” Annu. Rev. Phys. Chem. 40, 327–350 (1989). [CrossRef]
  25. N. Bloembergen and P. S. Pershan, “Light waves at the boundary of nonlinear media,” Phys. Rev. 128, 606–622 (1962). [CrossRef]
  26. T. F. Heinz, “Second-order nonlinear optical effects at surfaces and interfaces,” in Nonlinear Surface Electromagnetic Phenomena, H.-E. Ponath and G. I. Stegeman, eds. (Elsevier, 1991).
  27. H.-F. Wang, W. Gan, R. Lu, Y. Rao, and B.-H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24, 191–256 (2005). [CrossRef]
  28. D. B. O’Brien and A. M. Massari, “Simulated vibrational sum frequency generation from a multilayer thin film system with two active interfaces,” J. Chem. Phys. 138, 154708 (2013). [CrossRef]
  29. X. Zhuang, P. Miranda, D. Kim, and Y. Shen, “Mapping molecular orientation and conformation at interfaces by surface nonlinear optics,” Phys. Rev. B 59, 12632–12640 (1999). [CrossRef]
  30. C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, “Surface-enhanced second-harmonic generation and Raman scattering,” Phys. Rev. B 27, 1965–1979 (1983). [CrossRef]
  31. X. Wei, S.-C. Hong, A. I. Lvovsky, H. Held, and Y. R. Shen, “Evaluation of surface vs bulk contributions in sum-frequency vibrational spectroscopy using reflection and transmission geometries,” J. Phys. Chem. B 104, 3349–3354 (2000). [CrossRef]
  32. D.-S. Zheng, Y. Wang, A.-A. Liu, and H.-F. Wang, “Microscopic molecular optics theory of surface second harmonic generation and sum-frequency generation spectroscopy based on the discrete dipole lattice model,” Int. Rev. Phys. Chem. 27, 629–664 (2008). [CrossRef]
  33. N. J. Begue, A. J. Moad, and G. J. Simpson, “Nonlinear optical stokes ellipsometry. 1. Theoretical framework,” J. Phys. Chem. C 113, 10158–10165 (2009). [CrossRef]
  34. N. J. Begue, R. M. Everly, V. J. Hall, L. Haupert, and G. J. Simpson, “Nonlinear optical stokes ellipsometry. II. Experimental demonstration,” J. Phys. Chem. C 113, 10166–10175 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited