OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1524–1531

Cherenkov radiation in a metamaterial comprised of coated wires

Andrey V. Tyukhtin and Viktor V. Vorobev  »View Author Affiliations


JOSA B, Vol. 30, Issue 6, pp. 1524-1531 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001524


View Full Text Article

Enhanced HTML    Acrobat PDF (597 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The electromagnetic field of a point charge moving in a “wire metamaterial” parallel to the wires is investigated. The metamaterial under consideration is a periodic structure of perfect conductors with a dielectric or magnetic coating. The spacing of the structure is assumed to be much less than the typical wavelengths; therefore, the structure can be described as an anisotropic medium that exhibits both frequency and spatial dispersions. In this paper, the general expressions for the field components have been obtained. A comparison with the charge field in a cold plasma has been performed. The charge is shown to radiate when its velocity is greater than a threshold determined by the wire coating parameters. The properties of the Cherenkov radiation in the metamaterial under consideration differ radically from those in an ordinary isotropic medium. In particular, the spectral density of the radiation energy decreases with the frequency. The maximum of the radiation pattern falls in the direction of the charge motion (if the losses in the medium are negligible) or in some close direction (if the losses are considered). For the ultrarelativistic case, the radiation pattern is very narrow, and the charge energy loss is small.

© 2013 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials

ToC Category:
Materials

History
Original Manuscript: February 4, 2013
Revised Manuscript: April 16, 2013
Manuscript Accepted: April 16, 2013
Published: May 10, 2013

Citation
Andrey V. Tyukhtin and Viktor V. Vorobev, "Cherenkov radiation in a metamaterial comprised of coated wires," J. Opt. Soc. Am. B 30, 1524-1531 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-6-1524


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. P. Zrelov, Vavilov–Cherenkov Radiation in High-Energy Physics (Israel Program for Scientific Translations, 1970).
  2. A. Kanareykin, “Cherenkov radiation and dielectric based accelerating structures: Wakefield generation, power extraction and energy transfer efficiency,” J. Phys. Conf. Ser. 236, 012032 (2010). [CrossRef]
  3. M. C. Thompson, H. Badakov, A. Cook, J. B. Rosenzweig, R. Tikhoplav, G. Travish, I. Blumenfeld, M. J. Hogan, R. Ischebeck, N. Kirby, R. Siemann, D. Walz, P. Muggli, A. Scott, and R. B. Yoder, “Breakdown limits on gigavolt-per-meter electron-beam-drivenWakefields in dielectric structures,” Phys. Rev. Lett. 100, 214801 (2008). [CrossRef]
  4. J. Lu, T. M. Grzegorczyk, Y. Zhang, J. P. Jr, B.-I. Wu, and J. A. Kong, “Cerenkov radiation in materials with negative permittivity and permeability,” Opt. Express 11, 723–734 (2003). [CrossRef]
  5. A. V. Tyukhtin, and S. N. Galyamin, “Vavilov–Cherenkov radiation in passive and active media with complex resonant dispersion,” Phys. Rev. E 77, 066606 (2008). [CrossRef]
  6. Y. O. Averkov, A. V. Kats, and V. M. Yakovenko, “Electron beam excitation of left-handed surface electromagnetic waves at artificial interfaces,” Phys. Rev. B 79, 193402 (2009). [CrossRef]
  7. S. N. Galyamin, A. V. Tyukhtin, A. Kanareykin, and P. Schoessow, “Reversed Cherenkov-transition radiation by a charge crossing a left-handed medium boundary,” Phys. Rev. Lett. 103, 194802 (2009). [CrossRef]
  8. Z. Duan, B.-I. Wu, S. Xi, H. S. Chen, and M. Chen, “Research progress in reversed Cherenkov radiation in double-negative metamaterials,” Prog. Electromagn. Res. 90, 75–87 (2009). [CrossRef]
  9. S. N. Galyamin and A. V. Tyukhtin, “Electromagnetic field of a moving charge in the presence of a left-handed medium,” Phys. Rev. B 81, 235134 (2010). [CrossRef]
  10. E. S. Belonogaya, S. N. Galyamin, and A. V. Tyukhtin, “Properties of Vavilov-Cherenkov radiation in an anisotropic medium with a resonant dispersion of permittivity,” J. Opt. Soc. Am. B 28, 2871–2878 (2011). [CrossRef]
  11. S. N. Galyamin and A. V. Tyukhtin, “Reversed Cherenkov transition radiation of charge entering anisotropic medium,” Phys. Rev. E 84, 056608 (2011). [CrossRef]
  12. Z. Y. Duan, C. Guo, and M. Chen, “Enhanced reversed Cherenkov radiation in a waveguide with double-negative metamaterials,” Opt. Express 19, 13825 (2011). [CrossRef]
  13. M. A. Shapiro, S. Trendafilov, Y. Urzhumov, A. Alu, R. J. Temkin, and G. Shvets, “Active negative-index metamaterial powered by an electron beam,” Phys. Rev. B 86, 085132 (2012). [CrossRef]
  14. Z. Y. Duan, C. Guo, J. Zhou, J. C. Lu, and M. Chen, “Novel electromagnetic radiation in a semi-infinite space filled with a double-negative metamaterial,” Phys. Plasmas 19, 013112 (2012). [CrossRef]
  15. P. A. Belov, R. Marqu’es, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003). [CrossRef]
  16. A. Demetriadou and J. B. Pendry, “Taming spatial dispersion in wire metamaterial,” J. Phys. Condens. Matter 20, 295222 (2008). [CrossRef]
  17. A. V. Tyukhtin and E. G. Doilnitsina, “Effective permittivity of a metamaterial from coated wires,” J. Phys. D 44, 265401 (2011). [CrossRef]
  18. V. V. Vorobev and A. V. Tyukhtin, “Nondivergent Cherenkov radiation in a wire metamaterial,” Phys. Rev. Lett. 108, 184801 (2012). [CrossRef]
  19. D. E. Fernandes, S. I. Maslovski, and M. G. Silveirinha, “Cherenkov emission in a nanowire material,” Phys. Rev. B 85, 155107 (2012). [CrossRef]
  20. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996). [CrossRef]
  21. S. I. Maslovski, S. A. Tretyakov, and P. A. Belov, “Wire media with negative effective permittivity: a quasi-static model,” Microw. Opt. Technol. Lett. 35, 47–51 (2002). [CrossRef]
  22. P. A. Belov, S. Tretyakov, and A. J. Viitanen, “Dispersion and reflection properties of artificial media formed by regular lattices of ideally conducting wires,” J. Electromagn. Waves Appl. 16, 1153–1170 (2002). [CrossRef]
  23. G. Dewar, “Complex mediums V: light and complexity,” Proc. SPIE 5508, 158–166 (2004). [CrossRef]
  24. A. P. Prudnikov, Y. Brychkov, and O. I. Marichev, Integrals and Series. Special Functions (Nauka, 1983).
  25. V. M. Agranovich and V. L. Ginzburg, Spatial Dispersion in Crystal Optics and the Theory of Excitons (Interscience, 1966).
  26. M. G. Silveirinha, “Poynting vector, heating rate, and stored energy in structured materials: a first-principles derivation,” Phys. Rev. B 80, 235120 (2009). [CrossRef]
  27. M. G. Silveirinha and S. I. Maslovski, “Radiation from elementary sources in a uniaxial wire medium,” Phys. Rev. B 85, 155125 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited