OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1538–1545

Quantum random walks with multiphoton interference and high-order correlation functions

Bryan T. Gard, Robert M. Cross, Petr M. Anisimov, Hwang Lee, and Jonathan P. Dowling  »View Author Affiliations

JOSA B, Vol. 30, Issue 6, pp. 1538-1545 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (636 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show a simulation of quantum random walks (QRWs) with multiple photons using a staggered array of 50/50 beam splitters with a bank of detectors at any desired level. We discuss the multiphoton interference effects that are inherent to this setup, and introduce one, two, and threefold coincidence detection schemes. Feynman diagrams are used to intuitively explain the unique multiphoton interference effects of these QRWs.

© 2013 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: November 12, 2012
Revised Manuscript: April 19, 2013
Manuscript Accepted: April 22, 2013
Published: May 13, 2013

Bryan T. Gard, Robert M. Cross, Petr M. Anisimov, Hwang Lee, and Jonathan P. Dowling, "Quantum random walks with multiphoton interference and high-order correlation functions," J. Opt. Soc. Am. B 30, 1538-1545 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Aharonov, L. Davidovich, and N. Zagury, “Quantum random walks,” Phys. Rev. A 48, 1687–1690 (1993). [CrossRef]
  2. J. Kempe, “Quantum random walks: an introductory overview,” Contemp. Phys. 44, 307–327 (2003). [CrossRef]
  3. N. Shenvi, J. Kempe, and K. B. Whaley, “Quantum random-walk search algorithm,” Phys. Rev. A 67, 052307 (2003). [CrossRef]
  4. N. B. Lovett, S. Cooper, M. Everitt, M. Trevers, and V. Kendon, “Universal quantum computation using the discrete-time quantum walk,” Phys. Rev. A 81, 042330 (2010). [CrossRef]
  5. E. Farhi and S. Gutmann, “Quantum computation and decision trees,” Phys. Rev. A 58, 915–928 (1998). [CrossRef]
  6. H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, and Y. Silberberg, “Realization of quantum walks with negligible decoherence in waveguide lattices,” Phys. Rev. Lett. 100, 170506 (2008). [CrossRef]
  7. V. Kendon, “Decoherence in quantum walks—a review,” Math. Struct. Comp. Sci. 17, 1169–1220 (2007). [CrossRef]
  8. B. C. Travaglione and G. J. Milburn, “Implementing the quantum random walk,” Phys. Rev. A 65, 032310 (2002). [CrossRef]
  9. J. Du, H. Li, X. Xu, M. Shi, J. Wu, X. Zhou, and R. Han, “Experimental implementation of the quantum random-walk algorithm,” Phys. Rev. A 67, 042316 (2003). [CrossRef]
  10. J. K. Gamble, M. Friesen, D. Zhou, R. Joynt, and S. N. Coppersmith, “Two-particle quantum walks applied to the graph isomorphism problem,” Phys. Rev. A 81, 052313 (2010). [CrossRef]
  11. B. C. Sanders, S. D. Bartlett, B. Tregenna, and P. L. Knight, “Quantum quincunx in cavity quantum electrodynamics,” Phys. Rev. A 67, 042305 (2003). [CrossRef]
  12. W. Dür, R. Raussendorf, V. M. Kendon, and H. J. Briegel, “Quantum walks in optical lattices,” Phys. Rev. A 66, 052319 (2002). [CrossRef]
  13. P. L. Knight, E. Roldán, and J. E. Sipe, “Quantum walk on the line as an interference phenomenon,” Phys. Rev. A 68, 020301 (2003). [CrossRef]
  14. A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, and F. Sciarrino, “Experimental boson sampling in arbitrary integrated photonic circuits,” arXiv:1212.2783 [quant-ph].
  15. A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photonics 7, 322–328 (2013). [CrossRef]
  16. J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science 339, 798–801 (2013). [CrossRef]
  17. M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” arXiv:1212.2240 [quant-ph] (2012).
  18. F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt, and C. F. Roos, “Realization of a quantum walk with one and two trapped ions,” Phys. Rev. Lett. 104, 100503 (2010). [CrossRef]
  19. A. Peruzzo, M. Lobino, J. C. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. Obrien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010). [CrossRef]
  20. Y. Omar, N. Paunković, L. Sheridan, and S. Bose, “Quantum walk on a line with two entangled particles,” Phys. Rev. A 74, 042304 (2006). [CrossRef]
  21. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987). [CrossRef]
  22. T. D. Mackay, S. D. Bartlett, L. T. Stephenson, and B. C. Sanders, “Quantum walks in higher dimensions,” J. Phys. A 35, 2745 (2002). [CrossRef]
  23. H. Jeong, M. Paternostro, and M. S. Kim, “Simulation of quantum random walks using the interference of a classical field,” Phys. Rev. A 69, 012310 (2004). [CrossRef]
  24. C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University, 2004), pp. 122–139.
  25. P. P. Rohde, A. Schreiber, M. Štefaňák, I. Jex, and C. Silberhorn, “Multi-walker discrete time quantum walks on arbitrary graphs, their properties and their photonic implementation,” New J. Phys. 13, 013001 (2011). [CrossRef]
  26. Y. Bromberg, Y. Lahini, R. Morandotti, and Y. Silberberg, “Quantum and classical correlations in waveguide lattices,” Phys. Rev. Lett. 102, 253904 (2009). [CrossRef]
  27. M. Karski, L. Förster, J. Choi, A. Steffen, W. Alt, D. Meschede, and A. Widera, “Quantum walk in position space with single optically trapped atoms,” Science 325, 174 (2009). [CrossRef]
  28. S. Aaronson and A. Arkhipov, “The computational complexity of linear optics,” in Proceedings of 43rd Annual ACM Symposium on Theory of Computing, (ACM, 2011), pp. 333–342.
  29. M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White, “Photonic boson sampling in a tunable circuit,” Science 339, 794–798 (2013). [CrossRef]
  30. P. P. Rohde, “Are quantum walks the saviour of optical quantum computing?” arXiv:1010.4608 [quant-ph] (2010).
  31. S. D. Huver, C. F. Wildfeuer, and J. P. Dowling, “Entangled Fock states for robust quantum optical metrology, imaging, and sensing,” Phys. Rev. A 78, 063828 (2008). [CrossRef]
  32. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited