OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1546–1550

Frequency stabilization of Nd:YAG lasers with a most probable linewidth of 0.6 Hz

Haiqin Chen, Yanyi Jiang, Su Fang, Zhiyi Bi, and Longsheng Ma  »View Author Affiliations

JOSA B, Vol. 30, Issue 6, pp. 1546-1550 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (808 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two Nd:YAG lasers at 1064 nm are independently frequency-stabilized to two separately located, vertically mounted ultrastable Fabry–Perot reference cavities. Measurements show that each laser system has achieved a most probable linewidth of 0.6 Hz and fractional frequency instability of 1.2 × 10 15 between 1 and 40 s averaging time. Systematic evaluation shows that the performance of each laser system is limited by thermal noise of the reference cavity.

© 2013 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3940) Instrumentation, measurement, and metrology : Metrology
(300.3700) Spectroscopy : Linewidth
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 14, 2013
Revised Manuscript: April 16, 2013
Manuscript Accepted: April 16, 2013
Published: May 14, 2013

Haiqin Chen, Yanyi Jiang, Su Fang, Zhiyi Bi, and Longsheng Ma, "Frequency stabilization of Nd:YAG lasers with a most probable linewidth of 0.6 Hz," J. Opt. Soc. Am. B 30, 1546-1550 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped Hg199+ ion,” Science 293, 825–828 (2001). [CrossRef]
  2. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011). [CrossRef]
  3. S. J. Waldman, “Status of LIGO at the start of the fifth science run,” Class. Quantum Grav. 23, S653–S660 (2006). [CrossRef]
  4. S. G. Turyshev, “Experimental tests of general relativity: recent progress and future directions,” Phys. Uspekhi 52, 1–27 (2009). [CrossRef]
  5. Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L. S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011). [CrossRef]
  6. T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10−17 stability at 103  s,” Phys. Rev. Lett. 109, 230801 (2012). [CrossRef]
  7. T. W. Hänsch, “Nobel Lecture: passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006). [CrossRef]
  8. J. L. Hall, “Nobel Lecture: defining and measuring optical frequencies,” Rev. Mod. Phys. 78, 1279–1295 (2006). [CrossRef]
  9. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  10. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999). [CrossRef]
  11. S. A. Webster, M. Oxborrow, and P. Gill, “Subhertz-linewidth Nd:YAG laser,” Opt. Lett. 29, 1497–1499 (2004). [CrossRef]
  12. M. Notcutt, L. S. Ma, J. Ye, and J. L. Hall, “Simple and compact 1 Hz laser system via an improved mounting configuration of a reference cavity,” Opt. Lett. 30, 1815–1817 (2005). [CrossRef]
  13. H. Stoehr, F. Mensing, J. Helmcke, and U. Sterr, “Diode laser with 1 Hz linewidth,” Opt. Lett. 31, 736–738 (2006). [CrossRef]
  14. A. D. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. M. Foreman, M. M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15,” Opt. Lett. 32, 641–643 (2007). [CrossRef]
  15. J. Alnis, A. Matveev, N. Kolachevsky, Th. Udem, and T. W. Hänsch, “Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities,” Phys. Rev. A 77, 053809 (2008). [CrossRef]
  16. Y. Jiang, S. Fang, Z. Bi, X. Xu, and L. Ma, “Nd:YAG lasers at 1064 nm with 1 Hz linewidth,” Appl. Phys. B 98, 61–67 (2010). [CrossRef]
  17. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40 mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6, 687–692 (2012). [CrossRef]
  18. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985). [CrossRef]
  19. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985). [CrossRef]
  20. L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012). [CrossRef]
  21. K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93, 250602 (2004). [CrossRef]
  22. L. S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19, 1777–1779 (1994). [CrossRef]
  23. M. Notcutt, L. S. Ma, A. D. Ludlow, S. M. Foreman, J. Ye, and J. L. Hall, “Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers,” Phys. Rev. A 73, 031804 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited