OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1551–1568

Apodization of chirped quasi-phasematching devices

C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, and M. M. Fejer  »View Author Affiliations

JOSA B, Vol. 30, Issue 6, pp. 1551-1568 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (969 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Chirped quasi-phasematching (QPM) optical devices offer the potential for ultrawide bandwidths, high conversion efficiencies, and high amplification factors across the transparency range of QPM media. In order to properly take advantage of these devices, apodization schemes are required. We study apodization in detail for many regimes of interest, including low-gain difference frequency generation (DFG), high-gain optical parametric amplification (OPA), and high-efficiency adiabatic frequency conversion (AFC). Our analysis is also applicable to second-harmonic generation, sum frequency generation, and optical rectification. In each case, a systematic and optimized approach to grating construction is provided, and different apodization techniques are compared where appropriate. We find that nonlinear chirp apodization, where the poling period is varied smoothly, monotonically, and rapidly at the edges of the device, offers the best performance. We consider the full spatial structure of the QPM gratings in our simulations, but utilize the first order QPM approximation to obtain analytical and semi-analytical results. One application of our results is optical parametric chirped pulse amplification; we show that special care must be taken in this case to obtain high gain factors while maintaining a flat gain spectrum.

© 2013 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(320.7080) Ultrafast optics : Ultrafast devices
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Nonlinear Optics

Original Manuscript: February 25, 2013
Manuscript Accepted: March 28, 2013
Published: May 15, 2013

C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, and M. M. Fejer, "Apodization of chirped quasi-phasematching devices," J. Opt. Soc. Am. B 30, 1551-1568 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas,” J. Opt. Soc. Am. B 25, 463–480 (2008). [CrossRef]
  2. G. Imeshev, M. M. Fejer, A. Galvanauskas, and D. Harter, “Pulse shaping by difference-frequency mixing with quasi-phase-matching gratings,” J. Opt. Soc. Am. B 18, 534–539 (2001). [CrossRef]
  3. G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, “Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping,” J. Opt. Soc. Am. B 17, 304–318 (2000). [CrossRef]
  4. M. Charbonneau-Lefort, M. M. Fejer, and B. Afeyan, “Tandem chirped quasi-phase-matching grating optical parametric amplifier design for simultaneous group delay and gain control,” Opt. Lett. 30, 634–636 (2005). [CrossRef]
  5. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Competing collinear and noncollinear interactions in chirped quasi-phase-matched optical parametric amplifiers,” J. Opt. Soc. Am. B 25, 1402–1413 (2008). [CrossRef]
  6. L. Gallmann, G. Steinmeyer, U. Keller, G. Imeshev, M. M. Fejer, and J. Meyn, “Generation of sub-6 fs blue pulses by frequency doubling with quasi-phase-matching gratings,” Opt. Lett. 26, 614–616 (2001). [CrossRef]
  7. C. R. Phillips and M. M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35, 3093–3095 (2010). [CrossRef]
  8. H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009). [CrossRef]
  9. C. Heese, C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, “75 MW few-cycle mid-infrared pulses from a collinear apodized APPLN-based OPCPA,” Opt. Express 20, 26888–26894 (2012). [CrossRef]
  10. C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Role of apodization in optical parametric amplifiers based on aperiodic quasi-phasematching gratings,” Opt. Express 20, 18066–18071 (2012). [CrossRef]
  11. C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3,” Opt. Lett. 35, 2340–2342 (2010). [CrossRef]
  12. C. R. Phillips, L. Gallmann, and M. M. Fejer, “Design of quasi-phasematching gratings via convex optimization,” Opt. Express 21, 10139–10159 (2013). [CrossRef]
  13. C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 2478–2480 (2007). [CrossRef]
  14. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19, 18754–18773 (2011). [CrossRef]
  15. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett. 36, 3912–3914 (2011). [CrossRef]
  16. M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010). [CrossRef]
  17. K. A. Tillman, D. T. Reid, D. Artigas, J. Hellström, V. Pasiskevicius, and F. Laurell, “Low-threshold femtosecond optical parametric oscillator based on chirped-pulse frequency conversion,” Opt. Lett. 28, 543–545 (2003). [CrossRef]
  18. K. A. Tillman and D. T. Reid, “Monolithic optical parametric oscillator using chirped quasi-phase matching,” Opt. Lett. 32, 1548–1550 (2007). [CrossRef]
  19. C. R. Phillips and M. M. Fejer, “Adiabatic optical parametric oscillators: steady-state and dynamical behavior,” Opt. Express 20, 2466–2482 (2012). [CrossRef]
  20. C. R. Phillips and M. M. Fejer, “Stability of the singly resonant optical parametric oscillator,” J. Opt. Soc. Am. B 27, 2687–2699 (2010). [CrossRef]
  21. T. W. Neely, L. Nugent-Glandorf, F. Adler, and S. A. Diddams, “Broadband mid-infrared frequency upconversion and spectroscopy with an aperiodically poled LiNbO3 waveguide,” Opt. Lett. 37, 4332–4334 (2012). [CrossRef]
  22. Y. Deng, A. Schwarz, H. Fattahi, M. Ueffing, X. Gu, M. Ossiander, T. Metzger, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, G. Marcus, F. Krausz, R. Kienberger, and N. Karpowicz, “Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laserpulses at 2.1 μm,” Opt. Lett. 37, 4973–4975 (2012). [CrossRef]
  23. V. J. Hernandez, C. V. Bennett, B. D. Moran, A. D. Drobshoff, D. Chang, C. Langrock, M. M. Fejer, and M. Ibsen, “104 MHz rate single-shot recording with subpicosecond resolution using temporal imaging,” Opt. Express 21, 196–203 (2013). [CrossRef]
  24. J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, “Amplitude modulation and apodization of quasi-phase-matched interactions,” Opt. Lett. 31, 604–606 (2006). [CrossRef]
  25. T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Widely tunable 3.4 μm band difference frequency generation using apodized χ(2) grating,” Opt. Lett. 32, 1129–1131 (2007). [CrossRef]
  26. A. Tehranchi and R. Kashyap, “Design of novel unapodized and apodized step-chirped quasi-phase matched gratings for broadband frequency converters based on second-harmonic generation,” J. Lightwave Technol. 26, 343–349 (2008). [CrossRef]
  27. A. Bostani, A. Tehranchi, and R. Kashyap, “Engineering of effective second-order nonlinearity in uniform and chirped gratings,” J. Opt. Soc. Am. B 29, 2929–2934 (2012). [CrossRef]
  28. G. G. Luther, M. S. Alber, J. E. Marsden, and J. M. Robbins, “Geometric analysis of optical frequency conversion and its control in quadratic nonlinear media,” J. Opt. Soc. Am. B 17, 932–941 (2000). [CrossRef]
  29. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).
  30. G. D. Miller, “Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance,” Ph.D. dissertation (Stanford University, 1998).
  31. M. Taya, M. C. Bashaw, and M. M. Fejer, “Photorefractive effects in periodically poled ferroelectrics,” Opt. Lett. 21, 857–859 (1996). [CrossRef]
  32. J. R. Schwesyg, M. Falk, C. R. Phillips, D. H. Jundt, K. Buse, and M. M. Fejer, “Pyroelectrically induced photorefractive damage in magnesium-doped lithium niobate crystals,” J. Opt. Soc. Am. B 28, 1973–1987 (2011). [CrossRef]
  33. C. R. Phillips, J. S. Pelc, and M. M. Fejer, “Continuous wave monolithic quasi-phase-matched optical parametric oscillator in periodically poled lithium niobate,” Opt. Lett. 36, 2973–2975 (2011). [CrossRef]
  34. C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory, Vol. 1 (Springer, 1999).
  35. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996). [CrossRef]
  36. H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett. 94, 032906 (2009). [CrossRef]
  37. C. Conti, S. Trillo, P. Di Trapani, J. Kilius, A. Bramati, S. Minardi, W. Chinaglia, and G. Valiulis, “Effective lensing effects in parametric frequency conversion,” J. Opt. Soc. Am. B 19, 852–857 (2002). [CrossRef]
  38. R. B. White, Asymptotic Analysis of Differential Equations (World Scientific, 2005).
  39. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  40. M. D. Crisp, “Adiabatic-Following approximation,” Phys. Rev. A 8, 2128–2135 (1973). [CrossRef]
  41. R. Goldman, “Curvature formulas for implicit curves and surfaces,” Comput. Aided Geom. Des. 22, 632–658 (2005). [CrossRef]
  42. C. R. Phillips, J. S. Pelc, and M. M. Fejer, “Parametric processes in quasi-phasematching gratings with random duty cycle errors,” J. Opt. Soc. Am. B 30, 982–993 (2013). [CrossRef]
  43. J. S. Pelc, C. R. Phillips, D. Chang, C. Langrock, and M. M. Fejer, “Efficiency pedestal in quasi-phase-matching devices with random duty-cycle errors,” Opt. Lett. 36, 864–866 (2011). [CrossRef]
  44. A. V. Buryak, P. D. Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370, 63–235 (2002). [CrossRef]
  45. S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 2505–2510 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited