OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1569–1579

Mode transformation using graded photonic crystals with axial asymmetry

M. Turduev, B. B. Oner, I. H. Giden, and H. Kurt  »View Author Affiliations

JOSA B, Vol. 30, Issue 6, pp. 1569-1579 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1271 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a mode conversion method that enables transformation of the propagating mode from fundamental to higher-order modes by utilizing asymmetric graded index (A-GRIN) structures. Refractive index variations of two different asymmetric gradient profiles, i.e., exponential and Luneburg lens profiles, have been approximated by two-dimensional photonic crystals (PCs). The basic structure is composed of constant radii with different lattice sizes. The designed GRIN mode converters provide relatively high transmission efficiency in the spectral region of interest and achieve the transformation in compact configuration. Numerical approaches utilizing the finite-difference time-domain and plane wave expansion methods are used to analyze the mode conversion phenomenon of proposed GRIN PC media. Analytical formulation based on ray theory is outlined to explore both ray trajectories and the physical concept of a wavefront retardation mechanism.

© 2013 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(110.2760) Imaging systems : Gradient-index lenses
(130.3120) Integrated optics : Integrated optics devices
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

Original Manuscript: January 10, 2013
Revised Manuscript: April 13, 2013
Manuscript Accepted: April 18, 2013
Published: May 16, 2013

M. Turduev, B. B. Oner, I. H. Giden, and H. Kurt, "Mode transformation using graded photonic crystals with axial asymmetry," J. Opt. Soc. Am. B 30, 1569-1579 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  2. H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13, 10316–10326 (2005). [CrossRef]
  3. M. Turduev, I. Giden, and H. Kurt, “Modified annular photonic crystals with enhanced dispersion relations: polarization insensitive self-collimation and nanophotonic wire waveguide designs,” J. Opt. Soc. Am. B 29, 1589–1598 (2012). [CrossRef]
  4. I. H. Giden and H. Kurt, “Modified annular photonic crystals for enhanced band gap properties and iso-frequency contour engineering,” Appl. Opt. 51, 1287–1296 (2012). [CrossRef]
  5. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000). [CrossRef]
  6. H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron. 43, 78–84 (2007). [CrossRef]
  7. W. D. Zhou, J. Sabarinathan, P. Bhattacharya, B. Kochman, E. Berg, P. C. Yu, and S. Pang, “Characteristics of a photonic bandgap single defect microcavity electroluminescent device,” IEEE J. Quantum Electron. 37, 1153–1160 (2001). [CrossRef]
  8. M. Yano, F. Yamagishi, and T. Tsuda, “Optical MEMS for photonic switching-compact and stable optical cross connect switches for simple, fast and flexible wavelength applications in recent photonic networks,” IEEE J. Sel. Top. Quantum Electron. 11, 383–394 (2005). [CrossRef]
  9. M. Shah, J. D. Craw, and S. Wang, “Optical waveguide mode conversion experiments,” Appl. Phys. Lett. 20, 66–69 (1972). [CrossRef]
  10. F. Auracher, “Mode order converter,” Opt. Commun. 11, 187–190 (1974). [CrossRef]
  11. Y. Huang, G. Xu, and S. Ho, “An ultra compact optical mode order converter,” IEEE Photon. Technol. Lett. 18, 2281–2283 (2006).
  12. B. Lee and S. Shin, “Mode order converter in a multimode waveguide,” Opt. Lett. 28, 1660–1662 (2003). [CrossRef]
  13. M. Yang, H. Chen, K. Webb, S. Minin, S. Chuang, and G. Cueva, “Demonstration of mode conversion in an irregular waveguide,” Opt. Lett. 31, 383–385 (2006). [CrossRef]
  14. J. Castro, D. Geraghty, S. Honkanen, C. Greiner, D. Iazikov, and T. Mossberg, “Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings,” Opt. Express 13, 4180–4184 (2005). [CrossRef]
  15. J. Castillo, J. Castro, R. Kostuk, and D. Geraghty, “Study of multichannel parallel anti-symmetric waveguide Bragg gratings for telecom applications,” IEEE Photon. Technol. Lett. 19, 85–87 (2007). [CrossRef]
  16. J. Kurz, J. Huang, X. Xie, T. Saida, and M. Fejer, “Mode multiplexing in optical frequency mixers,” Opt. Lett. 29, 551–553 (2004). [CrossRef]
  17. M. Pruessner, J. Khurgin, T. Stievater, W. Rabinovich, R. Bass, J. Boos, and V. Urick, “Demonstration of a mode-conversion cavity add-drop filter,” Opt. Lett. 36, 2230–2232 (2011). [CrossRef]
  18. J. Tan, M. Lu, A. Stein, and W. Jiang, “High-purity transmission of a slow light odd mode in a photonic crystal waveguide,” Opt. Lett. 37, 3189–3191 (2012). [CrossRef]
  19. V. Delaubert, M. Lassen, D. Pulford, H. Bachor, and C. Harb, “Spatial mode discrimination using second harmonic generation,” Opt. Express 15, 5815–5826 (2007). [CrossRef]
  20. B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale mode selector in silicon waveguide for on chip nanofocusing applications,” Nano Lett. 9, 3381–3386 (2009). [CrossRef]
  21. J. Leuthold, J. Eckner, E. Gamper, P. A. Besse, and H. Melchior, “Multimode interference couplers for the conversion and combining of zero- and first-order modes,” J. Lightwave Technol. 16, 1228–1239 (1998). [CrossRef]
  22. M. Lu, B. K. Juluri, S.-C. S. Lin, B. Kiraly, T. Gao, and T. J. Huang, “Beam aperture modifier and beam deflector using gradient-index photonic crystals,” J. Appl. Phys. 108, 103505 (2010). [CrossRef]
  23. H. Kurt and D. S. Citrin, “Graded index photonic crystals,” Opt. Express 15, 1240–1253 (2007). [CrossRef]
  24. H. Kurt and D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photon. Technol. Lett. 19, 1532–1534 (2007). [CrossRef]
  25. H. T. Chien, C. Lee, H. K. Chiu, K. C. Hsu, C. C. Chen, J. A. Ho, and C. Cho, “The comparison between the graded photonic crystal coupler and various coupler,” J. Lightwave Technol. 27, 2570–2574 (2009).
  26. B. Vasić and R. Gajić, “Self-focusing media using graded photonic crystals: focusing, Fourier transforming and imaging, directive emission and directional cloaking,” J. Appl. Phys. 110, 053103 (2011). [CrossRef]
  27. F. Gaufillet and É. Akmansoy, “Graded photonic crystals for graded index lens,” Opt. Commun. 285, 2638–2641 (2012). [CrossRef]
  28. C. Tan, T. Niemi, C. Peng, and M. Pessa, “Focusing effect of a graded index photonic crystal lens,” Opt. Commun. 284, 3140–3143 (2011). [CrossRef]
  29. H. W. Wang and L. W. Chen, “High transmission efficiency of arbitrary waveguide bends formed by graded index photonic crystals,” J. Opt. Soc. Am. B 28, 2098–2104 (2011). [CrossRef]
  30. E. Centeno, D. Cassagne, and J.-P. Albert, “Mirage and superbending effect in two-dimensional graded photonic crystals,” Phys. Rev. B 73, 235119 (2006). [CrossRef]
  31. B. Vasic, G. Isic, R. Gajic, and K. Hingerl, “Controlling electromagnetic fields with graded photonic crystals in metamaterial regime,” Opt. Express 18, 20321–20333 (2010). [CrossRef]
  32. E. Akmansoy, E. Centeno, K. Vynck, D. Cassagne, and J.-M. Lourtioz, “Graded photonic crystals curve the flow of light: an experimental demonstration by the mirage effect,” Appl. Phys. Lett. 92, 133501 (2008). [CrossRef]
  33. H. Kurt, B. B. Oner, M. Turduev, and I. H. Giden, “Modified Maxwell fish-eye approach for efficient coupler design by graded photonic crystals,” Opt. Express 20, 22018–22033 (2012). [CrossRef]
  34. M. Wienold, A. Tahraoui, L. Schrottke, R. Sharma, X. Lü, K. Biermann, R. Hey, and H. Grahn, “Lateral distributed-feedback gratings for single-mode high-power terahertz quantum-cascade lasers,” Opt. Express 20, 11207–11217 (2012). [CrossRef]
  35. T. Swietlik, G. Franssen, R. Czernecki, M. Leszczynski, C. Skierbiszewski, I. Grzegory, T. Suski, P. Perlin, C. Lauterbach, and U. T. Schwarz, “Mode dynamics of high power (InAl)GaN based laser diodes grown on bulk GaN substrate,” J. Appl. Phys. 101, 083109 (2007). [CrossRef]
  36. S. Blaaberg, P. M. Petersen, and B. Tromborg, “Structure, stability, and spectra of lateral modes of a broad-area semiconductor laser,” IEEE J. Quantum Electron. 43, 959–973 (2007). [CrossRef]
  37. C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994). [CrossRef]
  38. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef]
  39. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  40. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  41. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refraction like behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696 (2000). [CrossRef]
  42. C. Gomez-Reino, M. V. Perez, and C. Bao, Gradient-Index Optics: Fundamentals and Applications (Springer, 2002).
  43. B. B. Oner, M. Turduev, I. H. Giden, and H. Kurt, “Efficient mode converter design using asymmetric graded index photonic structures,” Opt. Lett. 38, 220–222 (2013). [CrossRef]
  44. S. Y. Huang and S. Y. Wang, “Ray optics of a planar waveguide with an exponential index profile,” J. Appl. Phys. 55, 647–651 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (2228 KB)     
» Media 2: MPG (2666 KB)     
» Media 3: MPG (2126 KB)     
» Media 4: MPG (2114 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited