OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1601–1605

Verification of effective refraction index approach to the surface plasmon propagation in ultrathin tapered metal–dielectric–metal slot waveguides

Alexander A. Zharov, Jr., Daria A. Smirnova, and Alexander A. Zharov  »View Author Affiliations


JOSA B, Vol. 30, Issue 6, pp. 1601-1605 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001601


View Full Text Article

Enhanced HTML    Acrobat PDF (262 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We verify the effective refraction index approach (ERIA) developed for surface plasmon propagation in ultrathin tapered metal–dielectric–metal slot waveguides by means of comparison of exact solutions obtained within ERIA for two different profiles and different scales of tapering with finite-difference time-domain numerical simulations. We show that for smooth enough tapering, ERIA gives the plasmon field structure closely matched with numerical results. We also outline the range of the taper scales in which ERIA leads to the results different from simulations.

© 2013 Optical Society of America

OCIS Codes
(230.7400) Optical devices : Waveguides, slab
(240.6680) Optics at surfaces : Surface plasmons
(290.5825) Scattering : Scattering theory
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 22, 2013
Manuscript Accepted: April 22, 2013
Published: May 21, 2013

Citation
Alexander A. Zharov, Daria A. Smirnova, and Alexander A. Zharov, "Verification of effective refraction index approach to the surface plasmon propagation in ultrathin tapered metal–dielectric–metal slot waveguides," J. Opt. Soc. Am. B 30, 1601-1605 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-6-1601


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. P. Kaminov, W. L. Mammel, and H. P. Weber, “Metal-clad waveguides: analytical and experimental study,” Appl. Opt. 13, 396–405 (1974). [CrossRef]
  2. M. L. Brongersma and P. G. Kik, eds., Surface Plasmon Nanophotonics (Springer-Verlag, 2007), pp. 1–11.
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007), pp. 21–34.
  4. L. Cao and M. L. Brongersma, “Active plasmonics: ultrafast developments,” Nat. Photonics 3, 12–13 (2009). [CrossRef]
  5. A. M. Gobin, M. H. Lee, N. G. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7, 1929–1934 (2007). [CrossRef]
  6. S. Vedantam, H. Lee, J. Tang, J. Coway, M. Staffaroni, and E. Yablonovich, “A plasmonic dimple lens fore nanoscale focusing of light,” Nano Lett. 9, 3447–3452 (2009). [CrossRef]
  7. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003). [CrossRef]
  8. V. M. Menon, L. I. Deych, and A. A. Lisyansky, “Nonlinear optics: towards polaritonic logic circuits,” Nat. Photonics 4, 345–346 (2010). [CrossRef]
  9. D. A. B. Miller, “Are optical transistors the next logical step?,” Nat. Photonics 4, 3–5 (2010). [CrossRef]
  10. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010). [CrossRef]
  11. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolsky, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008). [CrossRef]
  12. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004). [CrossRef]
  13. D. K. Gramotnev, D. F. P. Pile, M. W. Vogel, and X. Zhang, “Local electric field enhancement during nanofocusing of plasmon by a tapered gap,” Phys. Rev. B 75, 035431 (2007). [CrossRef]
  14. A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear nanofocusing in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010). [CrossRef]
  15. D. A. Smirnova, A. I. Smirnov, and A. A. Zharov, “Two-dimensional plasmonic eigenmode nanolocalization in an inhomogeneous metal-dielectric-metal slot waveguide,” JETP Lett. 96, 245–250 (2012). [CrossRef]
  16. G. B. Hocker and W. K. Burns, “Mode dispersion in diffused channel waveguides by the effective index method,” Appl. Opt. 16, 113–118 (1977). [CrossRef]
  17. S. I. Bozhevolnyi, “Effective-index modeling of channel plasmon-polariton,” Opt. Express 14, 9467–9476 (2006). [CrossRef]
  18. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  19. G. Veronis, S. E. Kocabas, D. Miller, and S. Fan, “Modeling of plasmon waveguide components and networks,” J. Comput. Theor. Nanosci. 6, 1808 (2009). [CrossRef]
  20. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  21. A. A. Zharov, N. A. Zharova, D. A. Smirnova, and A. A. Zharov, “Three-dimensional nanofocusing of light through surface plasmon scattering by lump-like defect in metal/dielectric/metal slot waveguides,” J. Opt. Soc. Am. B 30, 626–630 (2013). [CrossRef]
  22. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed. (Cambridge, 1927), pp. 337–355, Part 2, “Transcendental functions”.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited