OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1614–1622

Wigner function, optical tomography of two-variable Hermite polynomial state, and its decoherence effects studied by the entangled-state representations

Xiang-guo Meng, Zhen Wang, Ji-suo Wang, and Hong-yi Fan  »View Author Affiliations


JOSA B, Vol. 30, Issue 6, pp. 1614-1622 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001614


View Full Text Article

Enhanced HTML    Acrobat PDF (513 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analytically investigate the Wigner function (WF) and the optical tomography for the two-variable Hermite polynomial state (THPS) and the effect of decoherence on the THPS via the entangled-state representations. The nonclassicality of the THPS is investigated in terms of the partial negativity of the WF, which depends much on the polynomial orders m, n and the squeezing parameter r. We also extend recent theoretical studies of optical tomography and introduce the radon transformation between the Wigner operator and the projection operator of the entangled state |η,τ1,τ2 to derive the tomogram of the THPS. Furthermore, we investigate how the WF for the THPS evolves undergoing the thermal channel. The results show that quantum dissipation in the decoherence channel can thoroughly deteriorate the nonclassicality of the THPS, and thermal noise leads to much quicker decoherence than amplitude damping.

© 2013 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(270.0270) Quantum optics : Quantum optics
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

ToC Category:
Quantum Optics

History
Original Manuscript: January 8, 2013
Revised Manuscript: April 12, 2013
Manuscript Accepted: April 19, 2013
Published: May 22, 2013

Citation
Xiang-guo Meng, Zhen Wang, Ji-suo Wang, and Hong-yi Fan, "Wigner function, optical tomography of two-variable Hermite polynomial state, and its decoherence effects studied by the entangled-state representations," J. Opt. Soc. Am. B 30, 1614-1622 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-6-1614


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. V. Dodonov, “‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years,” J. Opt. B 4, R1–R33 (2002). [CrossRef]
  2. E. P. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932). [CrossRef]
  3. G. S. Agarwal and E. Wolf, “Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics I: mapping theorems and ordering of functions of noncommuting operators,” Phys. Rev. D 2, 2161–2186 (1970). [CrossRef]
  4. M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, “Distribution functions in physics: fundamentals,” Phys. Rep. 106, 121–167 (1984). [CrossRef]
  5. H. J. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical Fields (Springer, 2007).
  6. W. P. Schleich, Quantum Optics in Phase Space (Wiley, 2001).
  7. V. V. Dodonov and V. I. Man’ko, Theory of Nonclassical States of Light (Taylor & Francis, 2003).
  8. K. Vogel and H. Risken, “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase,” Phys. Rev. A 40, 2847–2849 (1989). [CrossRef]
  9. D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993). [CrossRef]
  10. F. Mallet, M. A. Castellanos-Beltran, H. S. Ku, S. Glancy, E. Knill, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, “Quantum state tomography of an itinerant squeezed microwave field,” Phys. Rev. Lett. 106, 220502 (2011). [CrossRef]
  11. V. V. Dodonov and L. A. de Souza, “Decoherence of superpositions of displaced number states,” J. Opt. B 7, S490–S499 (2005). [CrossRef]
  12. V. V. Dodonov and L. A. de Souza, “Decoherence of multicomponent symmetrical superpositions of displaced quantum states,” J. Phys. A 40, 13955–13974 (2007). [CrossRef]
  13. J. A. Bergou, M. Hillery, and D. Q. Yu, “Minimum uncertainty states for amplitude-squared squeezing: Hermite polynomial states,” Phys. Rev. A 43, 515–520 (1991). [CrossRef]
  14. V. Buzek, “SU(1, 1) squeezing of SU(1, 1) generalized coherent states,” J. Mod. Opt. 37, 303–316 (1990). [CrossRef]
  15. R. Loudon and P. L. Knight, “Squeezed light,” J. Mod. Opt. 34, 709–759 (1987). [CrossRef]
  16. P. Appell and J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques: Polynôme d’ermite (Gauthier-Villards, 1926).
  17. H. Y. Fan and X. Ye, “Hermite polynomial states in two-mode Fock space,” Phys. Lett. A 175, 387–390 (1993). [CrossRef]
  18. X. G. Meng, J. S. Wang, and Y. L. Li, “Wigner function and tomogram of the Hermite polynomial state,” Chin. Phys. B 16, 2415–2421 (2007). [CrossRef]
  19. R. Carranza and C. C. Gerry, “Photon-subtracted two-mode squeezed vacuum states and applications to quantum optical interferometry,” J. Opt. Soc. Am. B 29, 2581–2587 (2012). [CrossRef]
  20. K. C. Zhu, S. X. Li, X. J. Zheng, and H. Q. Tang, “Non-Gaussian state with vortex structure of quanntized radiation field,” J. Opt. Soc. Am. B 29, 1179–1185 (2012). [CrossRef]
  21. C. Navarrete-Benlloch, R. Garcia-Patron, J. H. Shapiro, and N. J. Cerf, “Enhancing quantum entanglement by photon addition and subtraction,” Phys. Rev. A 86, 012328 (2012). [CrossRef]
  22. H. Y. Fan, H. L. Lu, and Y. Fan, “Newton–Leibniz integration for ket–bra operators in quantum mechanics and derivation of entangled state representations,” Ann. Phys. 321, 480–494 (2006). [CrossRef]
  23. H. Y. Fan and J. R. Klauder, “Eigenvectors of two particles’ relative position and total momentum,” Phys. Rev. A 49, 704–707 (1994). [CrossRef]
  24. A. Kenfack and K. Zyczkowski, “Negativity of the Wigner function as an indicator of nonclassicality,” J. Opt. B 6, 396–404 (2004). [CrossRef]
  25. M. G. Raymer and M. Beck, “Experimental quantum state tomography of optical fields and ultrafast statistical sampling,” Lect. Notes Phys. 649, 235–295 (2004). [CrossRef]
  26. V. I. Man’ko, G. Marmo, A. Porzio, S. Solimeno, and F. Ventriglia, “Homodyne estimation of quantum state purity by exploiting the covariant uncertainty relation,” Phys. Scr. 83, 045001 (2011). [CrossRef]
  27. V. V. Dodonov and V. I. Man’ko, “Invariants and the evolution of nonstationary quantum system,” in Proceedings of the Lebedev Physical Institute (Nova Science, 1989), pp. 3–101.
  28. A. Ibort, V. I. Man’ko, G. Marmo, A. Simoni, and F. Ventriglia, “An introduction to the tomographic picture of quantum mechanics,” Phys. Scr. 79, 065013 (2009). [CrossRef]
  29. Y. A. Korennoy and V. I. Man’ko, “Optical tomography of photon-added coherent states, even and odd coherent states, and thermal states,” Phys. Rev. A 83, 053817 (2011). [CrossRef]
  30. C. L. Mehta, “Diagonal coherent-state representation of quantum operators,” Phys. Rev. Lett. 18, 752–754 (1967). [CrossRef]
  31. C. W. Gardiner and P. Zoller, Quantum Noise (Springer, 2000).
  32. H. Y. Fan and Y. Fan, “New representation of thermal states in thermal field dynamics,” Phys. Lett. A 246, 242–246 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited