OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1631–1636

Design of photonic directional couplers as phase selectors

Po-Yi Lee, Chih-Hsien Huang, and Wen-Feng Hsieh  »View Author Affiliations

JOSA B, Vol. 30, Issue 6, pp. 1631-1636 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (541 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A phase selector is designed by relatively sliding two coupled identical photonic crystal waveguides (PCWs) of a photonic directional coupler (DC). By solving the coupled equations analytically derived from the tight-binding theory, symmetry breaking in the crossing of dispersion curves can be observed as countersliding two degenerated waveguides along the propagation direction. There exists a different phase shift between two eigenmodes by varying the sliding distance and the operating frequency. Numerical simulations of DCs made of photonic crystal slabs were used to verify the correctness of our theoretical predictions and to discuss thoroughly the underlying physics of the symmetry-breaking system. The design concept is provided for a phase selector or a beam splitter whose output phase difference can be controlled by the sliding distance of two PCWs.

© 2013 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(130.2790) Integrated optics : Guided waves
(230.7400) Optical devices : Waveguides, slab
(230.5298) Optical devices : Photonic crystals

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 19, 2013
Revised Manuscript: April 20, 2013
Manuscript Accepted: April 20, 2013
Published: May 22, 2013

Po-Yi Lee, Chih-Hsien Huang, and Wen-Feng Hsieh, "Design of photonic directional couplers as phase selectors," J. Opt. Soc. Am. B 30, 1631-1636 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Liu, M. H. Pu, K. Yvind, and J. M. Hvam, “High-efficiency large-bandwidth silicon-on-insulator grating coupler based on a fully-etched photonic crystal structure,” Appl. Phys. Lett. 96, 051126 (2010). [CrossRef]
  2. B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, and E. S. Hossieni, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3, 031001 (2009). [CrossRef]
  3. S. W. Ha, A. A. Sukhorukov, K. B. Dossou, L. C. Botten, A. V. Lavrinenko, D. N. Chigrin, and Y. S. Kivshar, “Dispersionless tunneling of slow light in antisymmetric photonic crystal couplers,” Opt. Express 16, 1104–1114 (2008). [CrossRef]
  4. T. B. Yu, M. H. Wang, X. Q. Jiang, Q. H. Liao, and J. Y. Yang, “Ultracompact and wideband power splitter based on triple photonic crystal waveguides directional coupler,” J. Opt. A 9, 37–42 (2007). [CrossRef]
  5. L. Petti, M. Rippa, J. Zhou, L. Manna, and P. Mormile, “A novel hybrid organic/inorganic photonic crystal slab showing a resonance action at the band edge,” Nanotechnology 22, 285307 (2011). [CrossRef]
  6. K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006). [CrossRef]
  7. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004). [CrossRef]
  8. G. Calo, A. D’Orazio, M. Grande, V. Marrocco, and V. Petruzzeli, “Active InGaAsP/InP photonic bandgap waveguides for wavelength-selective switching,” IEEE J. Quantum Electron. 47, 172–181 (2011). [CrossRef]
  9. K. Suzuki and T. Baba, “Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides,” Opt. Express 18, 26675–26685 (2010). [CrossRef]
  10. A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996). [CrossRef]
  11. A. Sharkawy, S. Y. Shi, D. W. Prather, and R. A. Soef, “Electro-optical switching using coupled photonic crystal waveguides,” Opt. Express 10, 1048–1059 (2002). [CrossRef]
  12. D. W. Prather, S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, and B. Miao, “Photonic crystal structures and applications: perspective, overview, and development,” IEEE J. Sel. Top. Quantum Electron. 12, 1416–1437 (2006). [CrossRef]
  13. E. Bulgakov and A. Sadreev, “Switching through symmetry breaking for transmission in a T-shaped photonic waveguide coupled with two identical nonlinear micro-cavities,” J. Phys. Condens. Matter 23, 315303 (2011). [CrossRef]
  14. B. Maes, B. M. Soljacic, J. D. Joannopoulos, P. Bienstman, R. Baets, S. P. Gorza, and M. Haelterman, “Switching through symmetry breaking in coupled nonlinear micro-cavities,” Opt. Express 14, 10678–10683 (2006). [CrossRef]
  15. M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902 (2000). [CrossRef]
  16. I. Abdulhalim, “Reflective phase-only modulation using one-dimensional photonic crystals,” J. Opt. A 2, L9–L11 (2000). [CrossRef]
  17. C. H. Huang, W. F. Hsieh, and S. C. Cheng, “Tuning the decoupling point of a photonic-crystal directional coupler,” J. Opt. Soc. Am. B 26, 203–209 (2009). [CrossRef]
  18. F. S. S. Chien, J. B. Tu, W. F. Hsieh, and S. C. Cheng, “Tight-binding theory for coupled photonic crystal waveguides,” Phys. Rev. B 75, 125113 (2007). [CrossRef]
  19. F. S. S. Chien, Y. J. Hsu, W. F. Hsieh, and S. C. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119–1125 (2004). [CrossRef]
  20. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef]
  21. D. N. Christodoulides and N. K. Efremidis, “Discrete temporal solitons along a chain of nonlinear coupled microcavities embedded in photonic crystals,” Opt. Lett. 27, 568–570 (2002). [CrossRef]
  22. C. H. Huang, J. N. Wu, P. Y. Lee, W. F. Hsieh, and S. C. Cheng, “The properties and design concepts of photonic directional couplers made of crystal slabs,” J. Phys. D 43, 465103 (2010). [CrossRef]
  23. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Modeling the Flow of Light (Princeton University, 2008).
  24. G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photon. 1, 279–307 (2009). [CrossRef]
  25. Q. M. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010). [CrossRef]
  26. S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002). [CrossRef]
  27. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited