OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1637–1642

Complete pump depletion by autoresonant second harmonic generation in a nonuniform medium

Oded Yaakobi, Matteo Clerici, Lucia Caspani, François Vidal, and Roberto Morandotti  »View Author Affiliations


JOSA B, Vol. 30, Issue 6, pp. 1637-1642 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001637


View Full Text Article

Enhanced HTML    Acrobat PDF (348 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we develop for the first time to our knowledge an analytical theory of second harmonic generation (SHG) in a generic nonuniform χ ( 2 ) medium. It is shown that by varying the properties of the medium gradually enough, the system can enter an autoresonant state in which the phases of the fundamental pump and of the generated second harmonic wave are locked. The effect of autoresonance allows efficient transfer of energy between the waves and, due to the continuous phase-locking in the system, all the energy of the pump could be converted to the second harmonic. Simple closed-form expressions for the waves amplitudes as a function of the longitudinal coordinate are derived, and an explicit criterion for the stability of the autoresonant state is obtained. Our analytical theory is compared to the numerical solution of the coupled mode equations, which are found to be in excellent agreement with each other. The analytical closed-form expressions that we derive could be very useful for practical design of SHG devices with increased performances, such as highly efficient, wideband frequency converters.

© 2013 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.7070) Nonlinear optics : Two-wave mixing
(190.7220) Nonlinear optics : Upconversion
(190.4223) Nonlinear optics : Nonlinear wave mixing
(190.4975) Nonlinear optics : Parametric processes
(230.7405) Optical devices : Wavelength conversion devices

ToC Category:
Optical Devices

History
Original Manuscript: February 20, 2013
Revised Manuscript: April 19, 2013
Manuscript Accepted: April 27, 2013
Published: May 22, 2013

Citation
Oded Yaakobi, Matteo Clerici, Lucia Caspani, François Vidal, and Roberto Morandotti, "Complete pump depletion by autoresonant second harmonic generation in a nonuniform medium," J. Opt. Soc. Am. B 30, 1637-1642 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-6-1637


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. B. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008), pp. 96–104.
  2. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961). [CrossRef]
  3. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  4. T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265–1276 (1990). [CrossRef]
  5. K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 30, 1596–1604 (1994). [CrossRef]
  6. R. A. Haas, “Influence of a constant temperature gradient on the spectral-bandwidth of second-harmonic generation in nonlinear crystals,” Opt. Commun. 113, 523–529 (1995). [CrossRef]
  7. S. Richard, “Second-harmonic generation in tapered optical fibers,” J. Opt. Soc. Am. B 27, 1504–1512 (2010). [CrossRef]
  8. K. Regelskis, J. Žius, N. Gavrilin, and G. Račiukaitis, “Efficient second-harmonic generation of a broadband radiation by control of the temperature distribution along a nonlinear crystal,” Opt. Express 20, 28544–28556 (2012). [CrossRef]
  9. S. Longhi, “Third-harmonic generation in quasi-phase-matched χ(2) media with missing second harmonic,” Opt. Lett. 32, 1791–1793 (2007). [CrossRef]
  10. M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, “Competing collinear and noncollinear interactions in chirped quasi-phase-matched optical parametric amplifiers,” J. Opt. Soc. Am. B 25, 1402–1413 (2008). [CrossRef]
  11. H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, “Geometrical representation of sum frequency generation and adiabatic frequency conversion,” Phys. Rev. A 78, 063821 (2008). [CrossRef]
  12. H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, “Robust adiabatic sum frequency conversion,” Opt. Express 17, 12731–12740 (2009). [CrossRef]
  13. C. R. Phillips and M. M. Fejer, “Efficiency and phase of optical parametric amplification in chirped quasi-phase-matched gratings,” Opt. Lett. 35, 3093–3095 (2010). [CrossRef]
  14. O. Yaakobi, L. Caspani, M. Clerici, F. Vidal, and R. Morandotti, “Complete energy conversion by autoresonant three-wave mixing in nonuniform media,” Opt. Express 21, 1623–1632 (2013). [CrossRef]
  15. O. Yaakobi and L. Friedland, “Autoresonant four-wave mixing in optical fibers,” Phys. Rev. A 82, 023820 (2010). [CrossRef]
  16. A. Barak, Y. Lamhot, L. Friedland, and M. Segev, “Autoresonant dynamics of optical guided waves,” Phys. Rev. Lett. 103, 123901 (2009). [CrossRef]
  17. S. Trendafilov, V. Khudik, M. Tokman, and G. Shvets, “Hamiltonian description of non-reciprocal light propagation in nonlinear chiral fibers,” Physica B 405, 3003–3006 (2010). [CrossRef]
  18. M. Deutsch, B. Meerson, and J. Golub, “Strong plasma wave excitation by a chirped” laser beat wave,” Phys. Fluids B 3, 1773–1780 (1991). [CrossRef]
  19. I. Y. Dodin, G. M. Fraiman, V. M. Malkin, and N. J. Fisch, “Amplification of short laser pulses by Raman backscattering in capillary plasmas,” JETP 95, 625–638 (2002). [CrossRef]
  20. R. R. Lindberg, A. E. Charman, J. S. Wurtele, and L. Friedland, “Robust autoresonant excitation in the plasma beat-wave accelerator,” Phys. Rev. Lett. 93, 055001 (2004). [CrossRef]
  21. O. Yaakobi, L. Friedland, R. R. Lindberg, A. E. Charman, G. Penn, and J. S. Wurtele, “Spatially autoresonant stimulated Raman scattering in nonuniform plasmas,” Phys. Plasmas 15, 032105 (2008). [CrossRef]
  22. O. Yaakobi and L. Friedland, “Multidimensional, autoresonant three-wave interactions,” Phys. Plasmas 15, 102104 (2008). [CrossRef]
  23. T. Chapman, S. Huller, P. E. Masson-Laborde, W. Rozmus, and D. Pesme, “Spatially autoresonant stimulated Raman scattering in inhomogeneous plasmas in the kinetic regime,” Phys. Plasmas 17, 122317 (2010). [CrossRef]
  24. G. Valiulis, V. Jukna, O. Jedrkiewicz, M. Clerici, E. Rubino, and P. DiTrapani, “Propagation dynamics and X-pulse formation in phase-mismatched second-harmonic generation,” Phys. Rev. A 83, 043834 (2011). [CrossRef]
  25. G. Porat and A. Arie, “Efficient, broadband and robust frequency conversion by fully nonlinear adiabatic three-wave mixing,” J. Opt. Soc. Am. B 30, 1342–1351 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited