OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1643–1650

Simulation of self-organized parallel waveguides targeting nanoscale luminescent objects

Tetsuzo Yoshimura and Masatoshi Seki  »View Author Affiliations


JOSA B, Vol. 30, Issue 6, pp. 1643-1650 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001643


View Full Text Article

Enhanced HTML    Acrobat PDF (1027 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We simulated self-organized parallel waveguides constructed from two parallel input waveguides with a core width of 600 nm in a photopolymer using the finite-difference time-domain method. When write beams of 400 nm in wavelength are introduced from the input waveguides 4 μm apart, straight parallel waveguides are constructed in the photopolymer. When decreasing the distance between the input waveguides, the parallel waveguides attract each other and finally merge. By putting 600 nm wide luminescent objects at the waveguide destinations, self-organized parallel waveguides targeting the objects are constructed to pull them back to the correct destinations. The self-aligned parallel coupling waveguides are constructed even when a misalignment of 900 nm exists between the input waveguides and the luminescent objects. For write beams of 650 nm, the allowed misalignment increases due to increased divergence angles.

© 2013 Optical Society of America

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(220.0220) Optical design and fabrication : Optical design and fabrication
(260.5950) Physical optics : Self-focusing
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: March 26, 2013
Manuscript Accepted: April 23, 2013
Published: May 22, 2013

Citation
Tetsuzo Yoshimura and Masatoshi Seki, "Simulation of self-organized parallel waveguides targeting nanoscale luminescent objects," J. Opt. Soc. Am. B 30, 1643-1650 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-6-1643


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “How large a system can we build without optics?,” Workshop Notes, 8th Annual Workshop on Interconnections Within High Speed Digital Systems, Santa Fe, New Mexico, 12May1997, Lecture 1.2.
  2. Y. S. Liu, “Lighting the way in computer design,” IEEE Circuits Devices Mag. 14(1), 23–31 (1998). [CrossRef]
  3. M. P. Christensen, P. Milojkovic, M. J. McFadden, and M. W. Haney, “Multiscale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,” IEEE J. Sel. Top. Quantum Electron. 9, 548–556 (2003). [CrossRef]
  4. N. M. Jokerst, M. A. Brooke, S. Cho, S. ilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. Seo, D. S. Wils, and A. Brown, “The heterogeneous integration of optical interconnections into integrated microsystems,” IEEE J. Sel. Top. Quantum Electron. 9, 350–360 (2003). [CrossRef]
  5. T. Mikawa, M. Kinoshita, K. Hiruma, T. Ishitsuka, M. Okabe, S. Hiramatsu, H. Furuyama, T. Matsui, K. Kumai, O. Ibaragi, and M. Bonkohara, “Implementation of active interposer for high-speed and low-cost chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9, 452–459 (2003). [CrossRef]
  6. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, “Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects,” J. Lightwave Technol. 22, 2168–2176 (2004). [CrossRef]
  7. B. S. Rho, S. Kang, H. S. Cho, H.-H. Park, S.-W. Ha, and B.-H. Rhee, “PCB-compatible optical interconnection using 45°-ended connection rods and via-holed waveguides,” J. Lightwave Technol. 22, 2128–2134 (2004). [CrossRef]
  8. A. Glebov, M. G. Lee, D. Kudzuma, J. Roman, M. Peters, L. Huang, and S. Zhou, “Integrated waveguide microoptic elements for 3D routing in board-level optical interconnects,” Proc. SPIE 6126, 61260L (2006). [CrossRef]
  9. F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, “Terabit/sec-class board-level optical interconnects through polymer waveguides using 24-channel bidirectional transceiver modules,” in Proceedings of 61st Electronic Components & Technology Conference (IEEE, 2011), pp. 790–797.
  10. T. Yoshimura, J. Roman, Y. Takahashi, M. Lee, B. Chou, S. I. Beilin, W. V. Wang, and M. Inao, “Proposal of optoelectronic substrate with film/Z-connection based on OE-film,” in Proceedings of 3rd IEMT/IMC Symposium (IEEE-CPMT/IMAPS, 1999), pp. 140–145.
  11. T. Yoshimura, Y. Takahashi, M. Inao, M. Lee, W. Chou, S. Beilin, W. V. Wang, J. Roman, and T. Massingill, “Systems based on opto-electronic substrates with electrical and optical interconnections and methods for making,” U.S. patent 6,343,171 (January29, 2002).
  12. E. Bosman, J. Missinne, B. V. Hoe, G. V. Steenberge, S. Kalathimekkad, J. V. Erps, I. Milenkov, K. Panajotov, T. V. Gijseghem, P. Dubruel, H. Thienpont, and P. V. Daele, “Ultrathin optoelectronic device packaging in flexible carriers,” IEEE J. Sel. Top. Quantum Electron. 17, 617–628 (2011). [CrossRef]
  13. R. Nair, T. Gu, and M. W. Haney, “Hybrid chip-scale optical interconnects using multiple quantum well devices bonded to silicon,” in 2012 IEEE Optical Interconnects Conference (IEEE, 2012), pp. 18–19.
  14. J. Missinne, B. V. Hoe, E. Bosman, S. Kalathimekkad, G. V. Steenberge, and P. V. Daele, “Compact coupling and packaging concepts for flexible and stretchable polymer optical interconnects,” in 2012 IEEE Optical Interconnects Conference (IEEE, 2012), pp. 129–130.
  15. T. Yoshimura, Optical Electronics: Self-Organized Integration and Applications (Pan Stanford, 2012).
  16. X. Lin, A. Hosseini, X. Dou, H. Subbaraman, and R. T. Chen, “Low-cost board-to-board optical interconnects using molded polymer waveguide with 45 degree mirrors and inkjet-printed micro-lenses as proximity vertical coupler,” Opt. Express 21, 60–69 (2013). [CrossRef]
  17. T. Yoshimura, M. Ojima, Y. Arai, and K. Asama, “Three-dimensional self-organized micro optoelectronic systems for board-level reconfigurable optical interconnects—performance modeling and simulation,” IEEE J. Sel. Top. Quantum Electron. 9, 492–511 (2003). [CrossRef]
  18. T. Yoshimura, T. Inoguchi, T. Yamamoto, S. Moriya, Y. Teramoto, Y. Arai, T. Namiki, and K. Asama, “Self-organized lightwave network based on waveguide films for three-dimensional optical wiring within boxes,” J. Lightwave Technol. 22, 2091–2100 (2004). [CrossRef]
  19. T. Yoshimura, M. Miyazaki, Y. Miyamoto, N. Shimoda, A. Hori, and K. Asama, “Three-dimensional optical circuits consisting of waveguide films and optical Z-connections,” J. Lightwave Technol. 24, 4345–4352 (2006). [CrossRef]
  20. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006). [CrossRef]
  21. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9898 (2010). [CrossRef]
  22. F. E. Doany, B. G. Lee, S.n Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, “Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array,” J. Lightwave Technol. 29, 475–482 (2011). [CrossRef]
  23. D. Taillaert, F. V. Laere, A. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071–6077 (2006). [CrossRef]
  24. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011). [CrossRef]
  25. S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett. 18, 1035–1037 (1993). [CrossRef]
  26. T. M. Monro, C. M. de Sterke, and L. Poladian, “Selfwriting a waveguide in glass using photosensitivity,” Opt. Commun. 119, 523–526 (1995). [CrossRef]
  27. T. M. Monro, C. M. de Sterke, and L. Poladian, “Investigation of waveguide growth in photosensitive germanosilicate glass,” J. Opt. Soc. Am. B 13, 2824–2832 (1996). [CrossRef]
  28. A. S. Kewitsch and A. Yariv, “Self-focusing and self-trapping of optical beams upon photopolymerization,” Opt. Lett. 21, 24–26 (1996). [CrossRef]
  29. M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001). [CrossRef]
  30. K. Dorkenoo, O. Crégut, L. Mager, and F. Gillot, “Quasi-solitonic behavior of self-written waveguides created by photopolymerization,” Opt. Lett. 27, 1782–1784 (2002). [CrossRef]
  31. S. Shoji and S. Kawata, “Self-written waveguides in photopolymerizable resins,” Opt. Lett. 27, 185–187 (2002). [CrossRef]
  32. N. Hirose and O. Ibaragi, “Optical component coupling using self-written waveguides,” Proc. SPIE 5355, 206–214 (2004). [CrossRef]
  33. S. Jradi, O. Soppera, and D. J. Lougnot, “Fabrication of polymer waveguides between two optical fibers using spatially controlled light-induced polymerization,” Appl. Opt. 47, 3987–3993 (2008). [CrossRef]
  34. T. Yoshimura, J. Roman, Y. Takahashi, W. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, K. Motoyoshi, and W. Sotoyama, “Self-organizing waveguide coupling method “SOLNET” and its application to film optical circuit substrates,” in Proceedings of 50th Electronic Components & Technology Conference (IEEE, 2000), pp. 962–969.
  35. T. Yoshimura, W. Sotoyama, K. Motoyoshi, T. Ishitsuka, K. Tsukamoto, S. Tatsuura, H. Soda, and T. Yamamoto, “Method of producing optical waveguide system, optical device and optical coupler employing the same, optical network and optical circuit board,” U.S. patent 6,081,632 (June27, 2000).
  36. T. Yoshimura, A. Hori, Y. Yoshida, Y. Arai, H. Kurokawa, T. Namiki, and K. Asama, “Coupling efficiencies in reflective self-organized lightwave network (R-SOLNET) simulated by the beam propagation method,” IEEE Photon. Technol. Lett. 17, 1653–1655 (2005). [CrossRef]
  37. T. Yoshimura and H. Kaburagi, “Self-organization of optical waveguides between misaligned devices induced by write-beam reflection,” Appl. Phys. Express 1, 062007 (2008). [CrossRef]
  38. T. Yoshimura, C. Yoshino, K. Sasaki, T. Sato, and M. Seki, “Cancer therapy utilizing molecular layer deposition (MLD) and self-organized lightwave network (SOLNET)—proposal and theoretical prediction,” IEEE J. Sel. Top. Quantum Electron. 18, 1192–1199 (2012). [CrossRef]
  39. M. Seki and T. Yoshimura, “Reflective self-organizing lightwave network (R-SOLNET) using a phosphor,” Opt. Eng. 51, 074601 (2012). [CrossRef]
  40. S. Ono, T. Yoshimura, T. Sato, and J. Oshima, “Fabrication and evaluation of nano-scale optical circuits using sol-gel materials with photo-induced refractive index variation characteristics,” J. Lightwave Technol. 27, 1229–1235 (2009). [CrossRef]
  41. S. Ono, T. Yoshimura, T. Sato, and J. Oshima, “Fabrication of self-organized optical waveguides in photo-induced refractive index variation sol-gel materials with large index contrast,” J. Lightwave Technol. 27, 5308–5313 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited