OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1652–1659

Propagation-induced changes in the instantaneous polarization state, phase, and carrier–envelope phase of few-cycle pulsed beams

Miguel A. Porras  »View Author Affiliations

JOSA B, Vol. 30, Issue 6, pp. 1652-1659 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the temporal evolution of the electric field of few-cycle optical pulses with arbitrary, time-varying polarization states by means of the instantaneous polarization ellipse and phase, whose physical meanings for few-cycle pulses are clarified. A physically meaningful definition of carrier–envelope phase (CEP) for arbitrarily polarized pulses is introduced. This description is used to study the changes in the temporal evolution of the electric field of a few-cycle pulsed beam. Propagation is found to result in significant changes in the polarization state, phase, and CEP. Approximate analytical formulas for these effects are provided.

© 2013 Optical Society of America

OCIS Codes
(120.3620) Instrumentation, measurement, and metrology : Lens system design
(320.1590) Ultrafast optics : Chirping
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Ultrafast Optics

Original Manuscript: April 8, 2013
Manuscript Accepted: April 28, 2013
Published: May 22, 2013

Miguel A. Porras, "Propagation-induced changes in the instantaneous polarization state, phase, and carrier–envelope phase of few-cycle pulsed beams," J. Opt. Soc. Am. B 30, 1652-1659 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001). [CrossRef]
  2. T. Brixner, G. Krampert, P. Niklaus, and G. Gerber, “Generation and characterization of polarization-shaped femtosecond laser pulses,” Appl. Phys. B 74, S133–S144 (2002). [CrossRef]
  3. T. Brixner, N. H. Damrauer, G. Krampert, P. Niklaus, and G. Gerber, “Adaptive shaping of femtosecond polarization profiles,” J. Opt. Soc. Am. B 20, 878–881 (2003). [CrossRef]
  4. P. B. Corkum, N. H. Burnett, and M. Y. Ivanov, “Subfemtosecond pulses,” Opt. Lett. 19, 1870–1872 (1994). [CrossRef]
  5. H. Mashiko, S. Gilbertson, C. Li, S. D. Khan, M. M. Shakya, E. Moon, and Z. Chang, “Double Optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers,” Phys. Rev. Lett. 100, 103906 (2008). [CrossRef]
  6. G. Sansone, F. Ferrai, C. Vozzi, F. Calegari, S. Stagira, and M. Nisoli, “Towards atomic unit pulse duration by polarization-controlled few-cycle pulses,” J. Phys. B 42, 134005 (2009). [CrossRef]
  7. G. Sansone, E. Benedetti, J. P. Caumes, S. Stagira, C. Vozzi, M. Nisoli, L. Poletto, P. Villoresi, and V. Strelkov, “Shaping of attosecond pulses by phase-stabilized polarization gating,” Phys. Rev. A 80, 063837 (2009). [CrossRef]
  8. D. B. Milosevic, G. G. Paulus, and W. Becker, “Above-threshold ionization with few-cycle laser pulses and the relevance of the absolute phase,” Laser Physics 13, 948–958 (2003).
  9. D. B. Milosevic, G. G. Paulus, and W. Becker, “Phase dependent effects of a few-cycle pulse,” Phys. Rev. Lett. 89, 153001 (2002). [CrossRef]
  10. P. Dietrich and F. Krausz, “Determining the absolute carrier phase of a few-cycle laser pulse,” Opt. Lett. 25, 16–18 (2000). [CrossRef]
  11. M. Kakehata, Y. Kobayashi, H. Takada, and K. Torizuka, “Single-shot measurement of a carrier-envelope phase by use of a time-dependent polarization pulse,” Opt. Lett. 27, 1247–1249 (2002). [CrossRef]
  12. M. A. Porras, “Diffraction effects in few-cycle optical pulses,” Phys. Rev. E 65, 026606 (2002). [CrossRef]
  13. E. Born and E. Wolf, Principles of Optics (Pergamon, 1975), pp. 23–32.
  14. D. F. V. James, “Change of the polarization of light beams on propagation in free space,” J. Opt. Soc. Am. A 11, 1641–1643 (1994). [CrossRef]
  15. G. P. Agrawal and E. Wolf, “Propagation-induced polarization changes in partially coherent optical beams,” J. Opt. Soc. Am. A 17, 2019–2023 (2000). [CrossRef]
  16. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78, 3282–3285 (1997). [CrossRef]
  17. S. Stagira, E. Priori, G. Sansone, M. Nisoli, and S. De Silvestri, “Nonlinear guided propagation of few-optical-cycle laser pulses with arbitrary polarization states,” Phys. Rev. A 66, 033810 (2002). [CrossRef]
  18. A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohte, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic prosesses by intense light fields,” Nature 421, 611–615 (2003). [CrossRef]
  19. M. Nisoli, G. Sansone, S. Stagira, and S. De Silvestri, “Effects of carrier-envelope phase differences of few-optical-cycle light pulses in single-shot high-order-harmonic spectra,” Phys. Rev. Lett. 91, 213905 (2003). [CrossRef]
  20. A. E. Siegman, Lasers (University Science Books, 1986), pp. 626–697.
  21. M. A. Porras, B. Major, and Z. L. Horvath, “Carrier-envelope phase shift of few-cycle pulses along the focus of lenses and mirrors beyond the nonreshaping pulse approximation: the effect of pulse chirp,” J. Opt. Soc. Am. B 29, 3271–3276 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited