OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1660–1664

Influence of structural fluctuations on Q factor of nanocavities at the surface of three-dimensional photonic crystals

Kou Gondaira, Kenji Ishizaki, and Susumu Noda  »View Author Affiliations


JOSA B, Vol. 30, Issue 6, pp. 1660-1664 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001660


View Full Text Article

Enhanced HTML    Acrobat PDF (788 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the influence of structural fluctuations on the Q factor of nanocavities at the surface of 3D photonic crystals with a stacked-stripe structure. We analyze the Q factor of nanocavities by 3D finite-difference time-domain calculations in consideration of the misalignment of the position of the stacked layers and the fluctuation of the patterns in each layer. Misalignment of the order of 50nm has almost no influence on the Q factor, but the pattern fluctuations of the order of nanometers in each layer, especially in the surface layer, seriously impact the decrease of the Q factor.

© 2013 Optical Society of America

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(160.5298) Materials : Photonic crystals

ToC Category:
Materials

History
Original Manuscript: February 8, 2013
Revised Manuscript: April 10, 2013
Manuscript Accepted: April 26, 2013
Published: May 23, 2013

Citation
Kou Gondaira, Kenji Ishizaki, and Susumu Noda, "Influence of structural fluctuations on Q factor of nanocavities at the surface of three-dimensional photonic crystals," J. Opt. Soc. Am. B 30, 1660-1664 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-6-1660


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289, 604–606 (2000). [CrossRef]
  2. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305, 227–229 (2004). [CrossRef]
  3. P. Lodahl, a. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004). [CrossRef]
  4. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004). [CrossRef]
  5. M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett. 88, 171107 (2006). [CrossRef]
  6. S. A. Rinne, F. García-Santamaría, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2, 52–56 (2007). [CrossRef]
  7. K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics 2, 688–692 (2008). [CrossRef]
  8. K. Ishizaki and S. Noda, “Manipulation of photons at the surface of three-dimensional photonic crystals,” Nature 460, 367–370 (2009). [CrossRef]
  9. S. Takahashi, K. Suzuki, M. Okano, M. Imada, T. Nakamori, Y. Ota, K. Ishizaki, and S. Noda, “Direct creation of three-dimensional photonic crystals by a top-down approach,” Nat. Mater. 8, 721–725 (2009). [CrossRef]
  10. S. Kawashima, K. Ishizaki, and S. Noda, “Light propagation in three-dimensional photonic crystals,” Opt. Express 18, 386–392 (2010). [CrossRef]
  11. A. Tandaechanurat, S. Ishida, D. Guimard, M. Nomura, S. Iwamoto, and Y. Arakawa, “Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap,” Nat. Photonics 5, 91–94 (2010). [CrossRef]
  12. K. Ishizaki, M. Koumura, K. Suzuki, K. Gondaira, and S. Noda, “Realization of three-dimensional guiding of photons in photonic crystals,” Nat. Photonics 7, 133–137 (2013). [CrossRef]
  13. K. Ishizaki, K. Gondaira, Y. Ota, K. Suzuki, and S. Noda, “Nanocavities at the surface of three-dimensional photonic crystals,” Opt. Express 21, 10590–10596 (2013). [CrossRef]
  14. A. Chutinan and S. Noda, “Effects of structural fluctuations on the photonic bandgap during fabrication of a photonic crystal: a study of a photonic crystal with a finite number of periods,” J. Opt. Soc. Am. B 16, 1398–1402 (1999). [CrossRef]
  15. Z.-Y. Li and Z.-Q. Zhang, “Fragility of photonic band gaps in inverse-opal photonic crystals,” Phys. Rev. B 62, 1516–1519 (2000). [CrossRef]
  16. V. Yannopapas, N. Stefanou, and A. Modinos, “Effect of stacking faults on the optical properties of inverted opals,” Phys. Rev. Lett. 86, 4811–4814 (2001). [CrossRef]
  17. A. V. Lavrinenko, W. Wohlleben, and R. J. Leyrer, “Influence of imperfections on the insulating and guiding properties of finite Si-inverted opal crystals,” Opt. Express 17, 747–760 (2009). [CrossRef]
  18. K. Ishizaki, M. Okano, and S. Noda, “Numerical investigation of emission in finite-sized, three-dimensional photonic crystals with structural fluctuations,” J. Opt. Soc. Am. B 26, 1157–1161 (2009). [CrossRef]
  19. A. Rodriguez, M. Ibanescu, J. D. Joannopoulos, and S. G. Johnson, “Disorder-immune confinement of light in photonic-crystal cavities,” Opt. Lett. 30, 3192–3194 (2005). [CrossRef]
  20. T. Asano, B.-S. Song, and S. Noda, “Analysis of the experimental Q factors (∼1  million) of photonic crystal nanocavities,” Opt. Express 14, 1996–2002 (2006). [CrossRef]
  21. D. Fussell, S. Hughes, and M. Dignam, “Influence of fabrication disorder on the optical properties of coupled-cavity photonic crystal waveguides,” Phys. Rev. B 78, 144201 (2008). [CrossRef]
  22. L. Ramunno and S. Hughes, “Disorder-induced resonance shifts in high-index-contrast photonic crystal nanocavities,” Phys. Rev. B 79, 161303 (2009). [CrossRef]
  23. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009). [CrossRef]
  24. V. Savona, “Electromagnetic modes of a disordered photonic crystal,” Phys. Rev. B 83, 085301 (2011). [CrossRef]
  25. S. L. Portalupi, M. Galli, M. Belotti, L. C. Andreani, T. F. Krauss, and L. O’Faolain, “Deliberate versus intrinsic disorder in photonic crystal nanocavities investigated by resonant light scattering,” Phys. Rev. B 84, 045423 (2011). [CrossRef]
  26. S. Noda, N. Yamamoto, and A. Sasaki, “New realization method of three-dimensional photonic crystal in optical wavelength region,” Jpn. J. Appl. Phys. 35, L909–L912 (1996). [CrossRef]
  27. N. Yamamoto and S. Noda, “100 nm-scale alignment using laser beam diffraction pattern observation techniques and wafer fusion for realizing three-dimensional photonic crystal structure,” Jpn. J. Appl. Phys. 37, 3334–3338 (1998). [CrossRef]
  28. S. Kawashima, M. Imada, K. Ishizaki, and S. Noda, “High-precision alignment and bonding system for the fabrication of 3-D nanostructures,” J. Microelectromech. Syst. 16, 1140–1144 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited