OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1665–1670

Broadband highly transparent sapphires with biomimetic antireflective compound submicrometer structures for optical and optoelectronic applications

Jung Woo Leem, Myung Sub Kim, and Jae Su Yu  »View Author Affiliations


JOSA B, Vol. 30, Issue 6, pp. 1665-1670 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001665


View Full Text Article

Enhanced HTML    Acrobat PDF (2906 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We reported the broadband highly transparent sapphires with biomimetic antireflective compound submicrometer structures (c-SMSs) made of disordered nanocone arrays on closely packed ordered hemispherical submicrometer gratings (o-SMGs). The o-SMGs and nanocones were fabricated using the spin-coated silica spheres and thermally dewetted gold (Au) nanoparticles, respectively, as the etch masks by a dry etching. The silica spheres with an average diameter of 700±10nm were synthesized. The dot-like Au nanoparticles were formed from the Au thin films with different thicknesses by a proper heat treatment. The total and diffuse transmission characteristics of the fabricated c-SMSs on sapphires were investigated at wavelengths of 350–1100 nm, together with theoretical predictions using a rigorous coupled wave analysis simulation. For the c-SMSs with taller and larger nanocone arrays at 7 nm of Au film, an average total transmittance (Tavg) of 90.7% was obtained, exhibiting haze ratios (H) of 33.3 and 26% at λ=525 and 635 nm, respectively. These values were much higher than those of bare sapphire (i.e., Tavg85.4%, H5.4 and 3.7% at λ=525 and 635 nm, respectively). The surface of fabricated c-SMSs also exhibited a strong hydrophilic property with a low water contact angle of 10°.

© 2013 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: February 15, 2013
Revised Manuscript: April 9, 2013
Manuscript Accepted: April 25, 2013
Published: May 23, 2013

Citation
Jung Woo Leem, Myung Sub Kim, and Jae Su Yu, "Broadband highly transparent sapphires with biomimetic antireflective compound submicrometer structures for optical and optoelectronic applications," J. Opt. Soc. Am. B 30, 1665-1670 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-6-1665


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics 3, 297–303 (2009). [CrossRef]
  2. C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett. 80, 1088–1090 (2002). [CrossRef]
  3. H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, “High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays,” Nano Lett. 4, 1059–1062 (2004). [CrossRef]
  4. P. Cheng, H. Zhao, J. Bao, L. Wu, D. Li, and D. Yang, “Light absorption enhancement of amorphous silicon film coupled with metal nanoshells,” J. Opt. Soc. Am. B 30, 405–409 (2013). [CrossRef]
  5. C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B 93, 60–63 (2002). [CrossRef]
  6. B. S. Patel and Z. H. Zaidi, “The suitability of sapphire for laser windows,” Meas. Sci. Technol. 10, 146–151 (1999). [CrossRef]
  7. Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, “Wafer-level fabrication and optical characterization of nanoscale patterned sapphire substrates,” Appl. Surf. Sci. 258, 2–6 (2011). [CrossRef]
  8. I. M. Thomas, “Porous fluoride antireflective coatings,” Appl. Opt. 27, 3356–3358 (1988). [CrossRef]
  9. N. Kadakia, S. Naczas, H. Bakhru, and M. Huang, “Fabrication of surface textures by ion implantation for antireflection of silicon crystals,” Appl. Phys. Lett. 97, 191912 (2010). [CrossRef]
  10. S. M. Yang, Y. C. Hsieh, and C. A. Jeng, “Optimal design of antireflection coating and experimental verification by plasma enhanced chemical vapor deposition in small displays,” J. Vac. Sci. Technol. A 27, 336–341 (2009). [CrossRef]
  11. P. Lalanne and G. M. Morris, “Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain,” Proc. SPIE 2776, 300–309 (1996). [CrossRef]
  12. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003). [CrossRef]
  13. K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006). [CrossRef]
  14. Y. M. Song, G. C. Park, S. J. Jang, J. H. Ha, J. S. Yu, and Y. T. Lee, “Multifunctional light escaping architecture inspired by compound eye surface structures: from understanding to experimental demonstration,” Opt. Express 19(S2), A157–A165 (2011). [CrossRef]
  15. Y. H. Ko and J. S. Yu, “Highly transparent sapphire micro-grating structures with large diffuse light scattering,” Opt. Express 19, 15574–15583 (2011). [CrossRef]
  16. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273, 661–667 (2006). [CrossRef]
  17. Y. M. Song and Y. T. Lee, “Investigation of geometrical effects of antireflective subwavelength grating structures for optical device applications,” Opt. Quantum Electron. 41, 771–777 (2009). [CrossRef]
  18. J. W. Leem, Y. P. Kim, and J. S. Yu, “Tunable behavior of reflectance minima in periodic Ge submicron grating structures,” J. Opt. Soc. Am. B 29, 357–362 (2012). [CrossRef]
  19. Z. Z. Gu, A. Fujishima, and O. Sato, “Biomimetic titanium dioxide film with structural color and extremely stable hydrophilicity,” Appl. Phys. Lett. 85, 5067–5069 (2004). [CrossRef]
  20. J. A. Howarter and J. P. Youngblood, “Self-cleaning and next generation anti-fog surfaces and coating,” Macromol. Rapid Commun. 29, 455–466 (2008). [CrossRef]
  21. R. N. Wenzel, “Resistance of solid surface to wetting by water,” Ind. Eng. Chem. 28, 988–994 (1936). [CrossRef]
  22. C. E. Lee, Y. J. Lee, H. C. Kuo, M. R. Tsai, B. S. Cheng, T. C. Lu, S. C. Wang, and C. T. Kuo, “Enhancement of flip-chip light-emitting diodes with omni-directional reflector and textured micropillar arrays,” IEEE Photon. Technol. Lett. 19, 1200–1202 (2007). [CrossRef]
  23. J. W. Leem and J. S. Yu, “Wafer-scale highly-transparent and superhydrophilic sapphires for high performance optics,” Opt. Express 20, 26160–26166 (2012). [CrossRef]
  24. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘Moth Eye’ principle,” Nature 244, 281–282 (1973). [CrossRef]
  25. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  26. SOPRA. http://www.sopra-sa.com and http://refractiveindex.info , Accessed 1Jan. (2013).
  27. Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19, 297–305 (2011). [CrossRef]
  28. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002), Chap. 10.
  29. J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A 449–451, 769–773 (2007). [CrossRef]
  30. P. L. Redmond, A. J. Hallock, and L. E. Brus, “Electrochemical Ostwald ripening of colloidal Ag particles on conductive substrates,” Nano Lett. 5, 131–135 (2005). [CrossRef]
  31. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surface,” Appl. Phys. Lett. 93, 133108 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited