OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1683–1687

Single-photon generation by pulsed laser in optomechanical system via photon blockade effect

Liu Qiu, Lin Gan, Wei Ding, and Zhi-Yuan Li  »View Author Affiliations


JOSA B, Vol. 30, Issue 6, pp. 1683-1687 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001683


View Full Text Article

Enhanced HTML    Acrobat PDF (591 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically analyzed the photon quantum statistics properties of the output field from an optomechanical system driven by different pulsed lasers. Our results show that the probability of generating a single-photon state at the photon blockade region is greatly dependent on properties such as the shape, area, central frequency, length, and amplitude of the driving pulse. These results will give guidance to the design of the potential optimal optical pulse for generating a high-performance single-photon source.

© 2013 Optical Society of America

OCIS Codes
(270.5290) Quantum optics : Photon statistics
(120.4880) Instrumentation, measurement, and metrology : Optomechanics

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 25, 2013
Manuscript Accepted: April 24, 2013
Published: May 27, 2013

Citation
Liu Qiu, Lin Gan, Wei Ding, and Zhi-Yuan Li, "Single-photon generation by pulsed laser in optomechanical system via photon blockade effect," J. Opt. Soc. Am. B 30, 1683-1687 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-6-1683


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004). [CrossRef]
  2. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef]
  3. L. Childress, J. M. Taylor, A. S. Sorensen, and M. D. Lukin, “Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters,” Phys. Rev. A 72, 052330 (2005). [CrossRef]
  4. T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8, 184 (2006). [CrossRef]
  5. B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68, 1129–1179 (2005). [CrossRef]
  6. G. S. Solomon, E. B. Flagg, S. V. Polyakov, T. Thomay, and A. Muller, “Manipulating single photons from disparate quantum sources to be indistinguishable [Invited],” J. Opt. Soc. Am. B 29, 319–327 (2012). [CrossRef]
  7. A. Imamoglu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997). [CrossRef]
  8. L. Schneebeli, M. Kira, and S. W. Koch, “Characterization of strong light-matter coupling in semiconductor quantum-dot microcavities via photon-statistics spectroscopy,” Phys. Rev. Lett. 101, 097401 (2008). [CrossRef]
  9. I. Schuster, A. Kubanek, A. Fuhrmanek, T. Puppe, P. W. H. Pinkse, K. Murr, and G. Rempe, “Nonlinear spectroscopy of photons bound to one atom,” Nat. Phys. 4, 382–385 (2008). [CrossRef]
  10. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436, 87–90 (2005). [CrossRef]
  11. A. Ridolfo, M. Leib, S. Savasta, and M. J. Hartmann, “Photon blockade in the ultrastrong coupling regime,” Phys. Rev. Lett. 109, 193602 (2012). [CrossRef]
  12. A. Majumdar, M. Bajcsy, A. Rundquist, and J. Vučković, “Loss-enabled sub-Poissonian light generation in a bimodal nanocavity,” Phys. Rev. Lett. 108, 183601 (2012). [CrossRef]
  13. D. Press, S. Gotzinger, S. Reitzenstein, C. Hofmann, A. Loffler, M. Kamp, A. Forchel, and Y. Yamamoto, “Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime,” Phys. Rev. Lett. 98, 117402 (2007). [CrossRef]
  14. A. Majumdar, M. Bajcsy, and J. Vuckovic, “Probing the ladder of dressed states and nonclassical light generation in quantum-dot-cavity QED,” Phys. Rev. A 85, 041801 (2012). [CrossRef]
  15. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008). [CrossRef]
  16. M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65(7), 29–35 (2012). [CrossRef]
  17. M. Aspelmeyer, S. Groblacher, K. Hammerer, and N. Kiesel, “Quantum optomechanics—throwing a glance [Invited],” J. Opt. Soc. Am. B 27, A189–A197 (2010). [CrossRef]
  18. S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009). [CrossRef]
  19. A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009). [CrossRef]
  20. D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity optomechanics with stoichiometric SiN films,” Phys. Rev. Lett. 103, 207204 (2009). [CrossRef]
  21. S. Weis, R. Riviere, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef]
  22. C. Jiang, B. Chen, and K. D. Zhu, “Controllable nonlinear responses in a cavity electromechanical system,” J. Opt. Soc. Am. B 29, 220–225 (2012). [CrossRef]
  23. S. Kolkowitz, A. C. Jayich, Q. P. Unterreithmeier, S. D. Bennett, P. Rabl, J. G. Harris, and M. D. Lukin, “Coherent sensing of a mechanical resonator with a single-spin qubit,” Science 335, 1603–1606 (2012). [CrossRef]
  24. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009). [CrossRef]
  25. X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299–2305 (2012). [CrossRef]
  26. P. Meystre and S. Stenholm, “The mechanical effects of light—introduction,” J. Opt. Soc. Am. B 2, 1706 (1985). [CrossRef]
  27. P. Rabl, “Photon blockade effect in optomechanical systems,” Phys. Rev. Lett. 107, 063061 (2011). [CrossRef]
  28. M. Ludwig, A. H. Safavi-Naeini, O. Painter, and F. Marquardt, “Enhanced quantum nonlinearities in a two-mode optomechanical system,” Phys. Rev. Lett. 109, 063061 (2012).
  29. L. Tian and H. L. Wang, “Optical wavelength conversion of quantum states with optomechanics,” Phys. Rev. A 82, 053806 (2010). [CrossRef]
  30. J. Q. Liao and C. K. Law, “Cooling of a mirror in cavity optomechanics with a chirped pulse,” Phys. Rev. A 84, 053838 (2011). [CrossRef]
  31. M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, C. Brukner, K. Hammerer, G. J. Milburn, and M. Aspelmeyer, “Pulsed quantum optomechanics,” Proc. Natl. Acad. Sci. USA 108, 16182–16187 (2011). [CrossRef]
  32. A. Faraon, A. Majumdar, and J. Vučković, “Generation of nonclassical states of light via photon blockade in optical nanocavities,” Phys. Rev. A 81, 033838 (2010). [CrossRef]
  33. S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn, “Cavity nonlinear optics at low photon numbers from collective atomic motion,” Phys. Rev. Lett. 99, 213601 (2007). [CrossRef]
  34. F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose–Einstein condensate,” Science 322, 235–238 (2008). [CrossRef]
  35. S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” Science 335, 303–308 (2012). [CrossRef]
  36. A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited