OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1732–1742

Spectra, thresholds, and modal fields of a kite-shaped microcavity laser

Elena I. Smotrova, Victor Tsvirkun, Iryna Gozhyk, Clément Lafargue, Christian Ulysse, Melanie Lebental, and Alexander I. Nosich  »View Author Affiliations


JOSA B, Vol. 30, Issue 6, pp. 1732-1742 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001732


View Full Text Article

Enhanced HTML    Acrobat PDF (2982 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the lasing spectra, threshold gain values, and emission directionalities for a two-dimensional microcavity laser with a “kite” contour. The cavity modes are considered accurately using the linear electromagnetic formalism of the lasing eigenvalue problem with exact boundary and radiation conditions. We develop a numerical algorithm based on the Muller boundary integral equations discretized using the Nystrom technique, which has theoretically justified and fast convergence. The influence of the deviation from the circular shape on the modal characteristics is studied numerically for the modes polarized in the cavity plane, demonstrating opportunities of directionality improvement together with preservation of a low threshold. These advantageous features are shown for the perturbed whispering-gallery modes of high-enough azimuth orders. Other modes can display improved directivities while suffering from drastically higher threshold levels. Experiments based on planar organic microcavity lasers confirm the coexistence of Fabry–Perot-like and whispering-gallery-like modes in kite-shaped cavities and show good agreement with the predicted far-field angular diagrams.

© 2013 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(140.2050) Lasers and laser optics : Dye lasers
(140.3410) Lasers and laser optics : Laser resonators
(140.3560) Lasers and laser optics : Lasers, ring

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 7, 2013
Manuscript Accepted: April 15, 2013
Published: May 30, 2013

Citation
Elena I. Smotrova, Victor Tsvirkun, Iryna Gozhyk, Clément Lafargue, Christian Ulysse, Melanie Lebental, and Alexander I. Nosich, "Spectra, thresholds, and modal fields of a kite-shaped microcavity laser," J. Opt. Soc. Am. B 30, 1732-1742 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-6-1732


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289–291 (1992). [CrossRef]
  2. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006). [CrossRef]
  3. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes-part II: applications,” IEEE J. Sel. Top. Quantum Electron. 12, 15–32 (2006). [CrossRef]
  4. E. I. Smotrova, A. I. Nosich, T. Benson, and P. Sewell, “Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modeling with accurate 2D analysis,” IEEE J. Sel. Top. Quantum Electron. 11, 1135–1142 (2005). [CrossRef]
  5. J.-W. Ryu and M. Hentschel, “Designing coupled microcavity lasers for high-Q modes with unidirectional light emission,” Opt. Lett. 36, 1116–1118 (2011). [CrossRef]
  6. E. I. Smotrova, J. Ctyroky, T. M. Benson, P. Sewell, and A. I. Nosich, “Lasing frequencies and thresholds of the dipole-type supermodes in an active microdisk concentrically coupled with a passive microring,” J. Opt. Soc. Am. A 25, 2884–2892 (2008). [CrossRef]
  7. A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993). [CrossRef]
  8. H. G. L. Schwefel, H. E. Tureci, A. D. Stone, and R. K. Chang, “Progress in asymmetric resonant cavities: using shape as a design parameter in dielectric microcavity lasers,” in Optical Microcavities, K. Vahala, ed. (World Scientific, 2004), pp. 415–496.
  9. A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modeling,” Opt. Quantum Electron. 39, 1253–1272 (2007). [CrossRef]
  10. T. Harayama and S. Shinohara, “Two-dimensional microcavity lasers,” Laser Photon. Rev. 5, 247–281 (2011). [CrossRef]
  11. H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, and A. D. Stone, “Dramatic shape sensitivity of directional emission patterns from similarly deformed cylindrical polymer lasers,” J. Opt. Soc. Am. B 21, 923–934 (2004). [CrossRef]
  12. J. Wiersig, “Hexagonal dielectric resonators and microcrystal lasers,” Phys. Rev. A 67, 023807 (2003). [CrossRef]
  13. S.-K. Kim, S.-H. Kim, G.-H. Kim, H.-G. Park, D.-J. Shin, and Y.-H. Lee, “Highly directional emission from few-micron-size elliptical microdisks,” Appl. Phys. Lett. 84, 861–863 (2004). [CrossRef]
  14. C.-M. Lai, H.-M. Wu, P.-C. Huang, S.-L. Wang, and L.-H. Peng, “Single mode stimulated emission from prismlike gallium nitride submicron cavity,” Appl. Phys. Lett. 90, 1106–1108 (2007). [CrossRef]
  15. S. R. Dubertrand, E. Bogomolny, N. Djellali, M. Lebental, and C. Schmit, “Circular dielectric cavity and its deformations,” Phys. Rev. A 77, 013804 (2008). [CrossRef]
  16. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Q-factor and emission pattern control of the whispering gallery modes in notched microdisk resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 66–70 (2006). [CrossRef]
  17. Q. J. Wang, C. Yan, N. Yu, J. Unterhinninghofen, J. Wiersig, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Whispering-gallery mode resonators for highly unidirectional laser action,” Proc. Natl. Acad. Sci. USA 107, 22407–22412 (2010). [CrossRef]
  18. F. Courvoisier, V. Boutou, J. P. Wolf, R. K. Chang, and J. Zyss, “Deciphering output coupling mechanisms in spiral microcavities with femtosecond light bullets,” Opt. Lett. 30, 738–740 (2005). [CrossRef]
  19. T. Ben-Massaoud and J. Zyss, “Unidirectional laser emission from polymer-based spiral microdisks,” Appl. Phys. Lett. 86, 241110 (2005). [CrossRef]
  20. J. Wiersig and M. Hentschel, “Asymmetric scattering and nonorthogonal mode patterns in optical microspirals,” Phys. Rev. A 73, 031802 (2006). [CrossRef]
  21. M. Hentschel, T.-Y. Kwon, M. A. Belkin, R. Audet, and F. Capasso, “Angular emission characteristics of quantum cascade spiral microlasers,” Opt. Express 17, 10335–10343 (2009). [CrossRef]
  22. E. I. Smotrova, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical fields of the lowest modes in a uniformly active thin sub-wavelength spiral microcavity,” Opt. Lett. 34, 3773–3775 (2009). [CrossRef]
  23. J. Wiersig and M. Hentschel, “Combining directional light output and ultralow loss in deformed microdisks,” Phys. Rev. Lett. 100, 033901 (2008). [CrossRef]
  24. Q. Song, W. Fang, B. Liu, S.-T. Ho, G. S. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009). [CrossRef]
  25. Q. H. Song, L. Ge, A. D. Stone, H. Cao, J. Wiersig, J.-B. Shin, J. Unterhinninghofen, W. Fang, and G. S. Solomon, “Directional laser emission from a wavelength-scale chaotic microcavity,” Phys. Rev. Lett. 105, 103902 (2010). [CrossRef]
  26. Q. H. Song, L. Ge, J. Wiersig, J.-B. Shim, J. Unterhinninghofen, A. Eberspacher, W. Fang, G. S. Solomon, and H. Cao, “Wavelength-scale deformed microdisk lasers,” Phys. Rev. A 84, 063843 (2011). [CrossRef]
  27. E. I. Smotrova, V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, “Optical theorem helps understand thresholds of lasing in microcavities with active regions,” IEEE J. Quantum Electron. 47, 20–30 (2011). [CrossRef]
  28. C. Muller, Foundations of the Mathematical Theory of Electromagnetic Waves (Springer, 1969).
  29. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Accurate simulation of 2-D optical microcavities with uniquely solvable boundary integral equations and trigonometric-Galerkin discretization,” J. Opt. Soc. Am. A 21, 393–402 (2004). [CrossRef]
  30. A. F. Peterson, “The ‘interior resonance’ problem associated with surface integral equations of electromagnetics: numerical consequences and a survey of remedies,” Electromagnetics 10, 293–312 (1990). [CrossRef]
  31. V. Rokhlin, “Rapid solution of integral equations of scattering theory in two dimensions,” J. Comput. Phys. 86, 414–439 (1990). [CrossRef]
  32. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory (Springer, 1998).
  33. L. Wang, J. A. Cox, and A. Friedman, “Modal analysis of homogeneous optical waveguides by the boundary integral formulation and Nystrom method,” J. Opt. Soc. Am. A 15, 92–100 (1998). [CrossRef]
  34. E. I. Smotrova and A. I. Nosich, “Simulation of lasing modes in a kite-shaped microcavity laser,” in Proceedings of International Conference on Advanced Optoelectronics and Lasers (IEEE, 2010), pp. 144–146.
  35. E. I. Smotrova and A. I. Nosich, “Directional light emission from a kite-shaped microcavity laser,” in Proceedings of International Conference on Transparent Optical Networks (IEEE, 2011), paper We.A4.4.
  36. E. I. Smotrova and A. I. Nosich, “Thresholds of lasing and modal patterns of a limacon cavity analysed with Muller’s integral equations,” in Proceedings of International Conference On Laser and Optical Networks Modeling (IEEE, 2011), paper 083.
  37. J. L. Tsalamengas, “Exponentially converging Nystrom methods applied to the integral-integrodifferential equations of oblique scattering/hybrid mode propagation in presence of composite dielectric cylinders of arbitrary cross-section,” IEEE Trans. Antennas Propag. 55, 3239–3250 (2007). [CrossRef]
  38. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Dover, 1990).
  39. A. V. Pogorelov, Differential Geometry (Noordhoff, 1974).
  40. Z. T. Nazarchuk, Numerical Analysis of Wave Diffraction by Cylindrical Structures (Naukova Dumka, 1989) (in Russian).
  41. Y. V. Gandel, Introduction to the Methods of Computation of Singular and Hyper-Singular Integrals (Kharkiv National University, 2001) (in Russian).
  42. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, 1964).
  43. E. Y. Schmidt, N. V. Zorina, M. Y. Dvorko, N. I. Protsuk, K. V. Belyaeva, G. Clavier, R. Méallet-Renault, T. T. Vu, A. B. I. Mikhaleva, and B. A. Trofimov, “A general synthetic strategy for the design of new BODIPY fluorophores based on pyrroles with polycondensed aromatic and metallocene substituents,” Chem. Eur. J. 17, 3069–3073 (2011). [CrossRef]
  44. M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss, “Highly directional stadium-shaped polymer microlasers,” Appl. Phys. Lett. 88, 031108 (2006). [CrossRef]
  45. I. Gozhyk, G. Clavier, R. Méallet-Renault, M. Dvorko, R. Pansu, J.-F. Audibert, A. Brosseau, C. Lafargue, V. Tsvirkun, S. Lozenko, S. Forget, S. Chénais, C. Ulysse, J. Zyss, and M. Lebental, “Polarization properties of solid-state organic lasers,” Phys. Rev. A 86, 043817 (2012). [CrossRef]
  46. M. V. Balaban, R. Sauleau, T. M. Benson, and A. I. Nosich, “Accurate quantification of the Purcell effect in the presence of a dielectric microdisk of nanoscale thickness,” IET Micro Nano Lett. 6, 393–396 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited