OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1743–1746

Experimental demonstration of slow self-collimated beams through a coupled zigzag-box resonator in a two-dimensional photonic crystal

Sun-Goo Lee, Seong-Han Kim, Teun-Teun Kim, Jae-Eun Kim, Hae Yong Park, and Chul-Sik Kee  »View Author Affiliations


JOSA B, Vol. 30, Issue 6, pp. 1743-1746 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001743


View Full Text Article

Enhanced HTML    Acrobat PDF (531 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the experimental realization of slow self-collimated beams by using a 10-coupled zigzag-box resonator in a two-dimensional photonic crystal. The speeds of the beams are reduced to less than 0.023c at resonant frequencies where the transmission exhibit peak values. The dispersion relation and the group velocities of the beams in the coupled resonator are well described by the tight-binding model. Time-domain simulations of self-collimated pulses passing though the coupled resonator are also performed to demonstrate the slowing down the speed of the pulses. Our result could be useful in implementing devices to control self-collimated beams in time domain.

© 2013 Optical Society of America

OCIS Codes
(260.2030) Physical optics : Dispersion
(260.5950) Physical optics : Self-focusing
(230.4555) Optical devices : Coupled resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: February 28, 2013
Revised Manuscript: May 8, 2013
Manuscript Accepted: May 9, 2013
Published: May 30, 2013

Citation
Sun-Goo Lee, Seong-Han Kim, Teun-Teun Kim, Jae-Eun Kim, Hae Yong Park, and Chul-Sik Kee, "Experimental demonstration of slow self-collimated beams through a coupled zigzag-box resonator in a two-dimensional photonic crystal," J. Opt. Soc. Am. B 30, 1743-1746 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-6-1743


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. F. Krauss, “Why do we need slow light?,” Nat. Photonics 2, 448–450 (2008). [CrossRef]
  2. R. M. Camacho, C. J. Broadbent, I. Ali-Khan, and J. C. Howell, “All-optical delay of images using slow light,” Phys. Rev. Lett. 98, 043902 (2007). [CrossRef]
  3. Z. Wang and S. Fan, “Compact all-pass filters in photonic crystals as the building block for high-capacity optical delay lines,” Phys. Rev. E 68, 066616 (2003). [CrossRef]
  4. M. Povinelli, S. Johnson, and J. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145–7159 (2005). [CrossRef]
  5. S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 448–456 (2002). [CrossRef]
  6. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008). [CrossRef]
  7. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008). [CrossRef]
  8. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999). [CrossRef]
  9. M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000). [CrossRef]
  10. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999). [CrossRef]
  11. P. T. Rakich, M. S. Dahlem, S. Tandon, M. Ibanescu, M. Soljačiv´, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. P. Ippen, “Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal,” Nat. Mater. 5, 93–96 (2006). [CrossRef]
  12. Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, “Experimental demonstration of self-collimation inside a three-dimensional photonic crystal,” Phys. Rev. Lett. 96, 173902 (2006). [CrossRef]
  13. S.-H. Kim, T.-T. Kim, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Experimental demonstration of self-collimation of spoof surface plasmons,” Phys. Rev. B 83, 165109 (2011). [CrossRef]
  14. Z. Li, H. Chen, Z. Song, F. Yang, and S. Feng, “Finite-width waveguide and waveguide intersections for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 85, 4834–4836 (2004). [CrossRef]
  15. X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003). [CrossRef]
  16. S.-G. Lee, S. S. Oh, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87, 181106 (2005). [CrossRef]
  17. T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Asymmetric Mach–Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals,” Opt. Express 18, 5384–5389 (2010). [CrossRef]
  18. T.-T. Kim, S.-G. Lee, S.-H. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Ring-type Fabry–Perot filter based on the self-collimation effect in a 2D photonic crystal,” Opt. Express 18, 17106–17113 (2010). [CrossRef]
  19. S.-G. Lee, S.-H. Kim, T.-T. Kim, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Resonant transmission of self-collimated beams through coupled zigzag-box resonators: slow self-collimated beams in a photonic crystal,” Opt. Express 20, 8309–8316 (2012). [CrossRef]
  20. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 1995).
  21. S.-G. Lee, J.-S. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008). [CrossRef]
  22. T.-T. Kim, S.-G. Lee, M.-W. Kim, H. Y. Park, and J.-E. Kim, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures,” Appl. Phys. Lett. 95, 011119 (2009). [CrossRef]
  23. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  24. E. Ozbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945–1948 (1994). [CrossRef]
  25. T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, “Planar photonic crystal coupled cavity waveguides,” IEEE J. Sel. Top. Quantum Electron. 8, 909–918 (2002). [CrossRef]
  26. P. Sanchis, J. García, A. Martinez, and J. Martí, “Pulse propagation in adiabatically coupled photonic crystal coupled cavity waveguides,” J. Appl. Phys. 97, 013101 (2005). [CrossRef]
  27. S.-G. Lee, E. S. Lee, T.-I. Jeon, and C.-S. Kee, “Slowing down the speed of terahertz guiding modes of a metal air-gap waveguide by using a coupled plasmonic cavity,” J. Appl. Phys. 112, 113114 (2012). [CrossRef]
  28. M. Sumetsky and B. J. Eggleton, “Modeling and optimization of complex photonic resonant cavity circuits,” Opt. Express 11, 381–391 (2003). [CrossRef]
  29. P. Chak and J. E. Sipe, “Minimizing finite-size effects in artificial resonance tunneling structures,” Opt. Lett. 31, 2568–2570 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited