OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1747–1754

SrZn2Si2O7:Eu2+, Mn2+: a single-phased emission tunable nanophosphor suitable for white light emitting diodes

R. Salimi, H. Sameie, A. A. Sabbagh Alvani, A. A. Sarabi, H. Eivaz Mohammadloo, F. Nargesian, M. Sabbagh Alvani, and M. Tahriri  »View Author Affiliations

JOSA B, Vol. 30, Issue 6, pp. 1747-1754 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (847 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A series of emission-tunable nanophosphors with nominal composition of Sr0.96Zn2xSi2O7:0.04Eu2+, xMn2+ (0x0.15) were designed and synthesized by solgel technique for application in white-light-emitting diodes. The structural, morphological, and optical properties were investigated using comprehensive characterization methods, such as x-ray diffraction, scanning and transmission electron microscopy, energy-dispersive x-ray spectroscopy, and photoluminescence spectroscopy. The results indicate that the calcination temperature has strong effect on the crystalinity and morphology. Moreover, the calcination temperature can change grain size and microstrain. SrZn2Si2O7:Eu2+, Mn2+ phosphors show two emission bands excited by near ultraviolet light: blue (around 480 nm) and orange–yellow (around 595 nm) emissions. These emissions are photophysically originated from 4f65d1(D2)4f7(S7/28) transition of Eu2+ sensitizer ions and T41(G4)A16(S6) transition of Mn2+ activator ions, respectively. The phosphors can generate various lights with different color coordinates and relative color temperatures by properly tuning the relative ratio of the Eu2+ to Mn2+ ions through the principle of energy transfer. The energy transfer from Eu2+ to Mn2+ in SrZn2Si2O7 host matrix was confirmed by several experimental results, such as the luminescence spectra, energy transfer efficiency, and decay curve of the phosphors. Furthermore, the mechanism of this phenomenon was demonstrated as resonant type via a dipole–quadrupole reaction and the critical distance between Eu2+ and Mn2+ ions was calculated at about 10.7 Å. Eventually, when the dopant content of Mn2+ is 0.09, the color coordinate of the phosphor (x=0.345, y=0.301) is close to the normal white light and can be considered as a suitable UV-converting phosphor for white light-emitting diodes.

© 2013 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.4760) Materials : Optical properties
(160.6060) Materials : Solgel

ToC Category:

Original Manuscript: January 31, 2013
Revised Manuscript: April 21, 2013
Manuscript Accepted: April 21, 2013
Published: May 30, 2013

R. Salimi, H. Sameie, A. A. Sabbagh Alvani, A. A. Sarabi, H. Eivaz Mohammadloo, F. Nargesian, M. Sabbagh Alvani, and M. Tahriri, "SrZn2Si2O7:Eu2+, Mn2+: a single-phased emission tunable nanophosphor suitable for white light emitting diodes," J. Opt. Soc. Am. B 30, 1747-1754 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Kim, P. E. Jeon, Y. H. Park, J. C. Choi, H. L. Park, G. C. Kim, and T. W. Kim, “White-light generation through ultraviolet-emitting diode and white emitting phosphor,” Appl. Phys. Lett. 85, 3696–3698 (2004). [CrossRef]
  2. P. Uthirakumar, H. G. Kim, and C. H. Hong, “Zinc oxide nanostructures derived from a simple solution method for solar cells and LEDs,” Chem. Eng. J. 155, 910–915 (2009). [CrossRef]
  3. G. M. Salley, O. S. Wenger, K. W. Kramer, and H. U. Gudel, “Inorganic solid state optical materials: major recent advances,” Curr. Opin. Solid State Mater. Sci. 6, 487–493 (2002). [CrossRef]
  4. S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, “Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties,” Mater. Sci. Eng., R 71, 1–34 (2010). [CrossRef]
  5. X. Q. Piao, T. Horikawa, H. Hanzawa, and K. Machida, “Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white lightemitting-diode illumination,” Appl. Phys. Lett. 88, 161908 (2006). [CrossRef]
  6. P. K. Sharma, M. Kumar, and A. C. Pandey, “Green luminescent ZnO:Cu2+ nanoparticles for their applications in white-light generation from UV LEDs,” J. Nanopart. Res. 13, 1629–1637 (2011). [CrossRef]
  7. N. Guo, Y. Zheng, Y. Jia, H. Qiao, and H. You, “Warm-white emitting from Eu2+/Mn2+-codoped Sr3Lu(PO4)3 phosphor with tunable color tone and correlated color temperature,” J. Phys. Chem. C 116, 1329–1334 (2012). [CrossRef]
  8. Y. Liu, M. Nishiura, Y. Wang, and Z. M. Hou, “Pi-conjugated aromatic enynes as a single-emitting component for white electroluminescence,” J. Am. Chem. Soc. 128, 5592–5593 (2006). [CrossRef]
  9. C. H. Huang, T. M. Chen, W. R. Liu, Y. C. Chiu, Y. T. Yeh, and S. M. Jang, “A single phase emission-tunable phosphor Ca9Y(PO4)7:Eu2+, Mn2+ with efficient energy transfer for white light emitting diodes,” ACS Appl. Mater. Int. 2, 259–264 (2010).
  10. J. S. Kim, K. T. Lim, Y. S. Jeong, P. E. Jeon, J. C. Choi, and H. L. Park, “Full color Ba3MgSi2O8:Eu2+, Mn2+ phosphor for white light emitting diodes,” Solid State Commun. 135, 21–24 (2005). [CrossRef]
  11. W. J. Yang and T. M. Chen, “White-light generation and energy transfer in SrZn2(PO4)2:Eu, Mn phosphor for ultraviolet light-emitting diodes,” Appl. Phys. Lett. 88, 101903 (2006). [CrossRef]
  12. J. Kuang, Y. Liu, J. Zhang, L. Huang, J. Rong, and D. Yuan, “Blue-emitting long-lasting phosphor, Sr3Al10SiO20:Eu2+, Ho3+,” Solid State Commun. 136, 6–10 (2005). [CrossRef]
  13. H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Evaluation of sol-gel derived Eu2+ activated SrMgAl2SiO7 as a novel nanostructure luminescent pigment,” Physica B 405, 4796–4800 (2010).
  14. T. Yamashita and Y. Ohishi, “Analysis of energy transfers between Tb3+ and Yb3+ codoped in borosilicate glasses,” J. Opt. Soc. Am. B 26, 819–829 (2009). [CrossRef]
  15. R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, and M. Tahriri, “Sol-gel synthesis, characterization and luminescence properties of SrMgAl2SiO7:Eu2+ as a novel nanocrystalline phosphor,” Luminescence 26, 449–455 (2011).
  16. J. S. Kim, A. K. Kown, Y. H. Park, J. C. Choi, H. L. Park, and G. C. Kim, “Luminescent and thermal properties of full-color emitting X3MgSi2O8:Eu, Mn (X=Ba, Sr, Ca) phosphors for white LED,” J. Lumin. 122–123, 583–586 (2007). [CrossRef]
  17. B. Wang, L. Sun, H. Ju, S. Zhao, D. Deng, H. Wang, and Sh. Xu, “Sol-gel synthesis of single-phase Ca5MgSi3O12:Eu2+, Mn2+ phosphors for white-light emitting diodes,” Mater. Lett. 63, 1329–1331 (2009). [CrossRef]
  18. U. G. Caldino, A. F. Muoz, and J. O. Rubio, “Energy transfer in CaCl2:Eu:Mn crystals,” J. Phys. Condens. Matter 5, 2195–2202 (1993). [CrossRef]
  19. G. Q. Yao, J. H. Lin, L. Zhang, G. X. Lu, M. L. Gong, and M. Z. Su, “Luminescent properties of BaMg2Si3O7:Eu2+, Mn2+,” J. Mater. Chem. 8, 585–588 (1998). [CrossRef]
  20. W. J. Yang, L. Luo, T. M. Chen, and N. S. Wang, “Luminescence and energy transfer of Eu- and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED,” Chem. Mater. 17, 3883–3888 (2005). [CrossRef]
  21. Y. Chuangtao, X. Lijuan, X. Quanlan, L. Guanxi, P. Wenfang, and M. Jianxin, “Ba1xSrxMgSiO4:Eu2+, Mn2+: a novel tunable single-matrix tricolor phosphor for w-LED,” J. Rare Earths 30, 110–113 (2012). [CrossRef]
  22. W. Lu, Zh. Hao, X. Zhang, X. Liu, X. Wang, and J. Zhang, “Ca3Al2(SiO4)3−δCl4δ:Eu2+, Mn2+: a potential phosphor with energy transfer for near-UV pumped white-LEDs,” Opt. Mater. 33, 1262–1265 (2011). [CrossRef]
  23. B. Valeur, Molecular Fluorescence: Principles and Applications (Wiley VCH, 2001), pp. 155–172.
  24. M. Pang, X. Liu, and J. Lin, “Luminescence properties of R2MoO6:Eu3+ (R=Gd, Y, La) phosphors prepared by Pechini sol-gel process,” J. Mater. Res. 20, 2676–2681 (2005). [CrossRef]
  25. R. P. Rao, “Preparation and characterization of fine‐grain yttrium‐based phosphors by sol-gel process,” J. Electrochem. Soc. 143, 189–197 (1996). [CrossRef]
  26. J. C. Park, H. K. Moon, D. K. Kim, S. H. Byeon, B. C. Kim, and K. S. Suh, “Morphology and cathodoluminescence of Li-doped Gd2O3:Eu3+, a red phosphor operating at low voltages,” Appl. Phys. Lett. 77, 2162–2164 (2000). [CrossRef]
  27. P. Scardi, R. E. Dinnebier, and S. J. L. Billinge, Powder Diffraction: Theory and Practice (RSC, 2008).
  28. C. E. Kril and R. Birringer, “Estimating grain-size distributions in nanocrystalline materials from x-ray diffraction profile analysis,” Philos. Mag. A 77(3), 621–640 (1998). [CrossRef]
  29. M. B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J. S. Thakur, G. Lawes, R. Naik, V. M. Naik, and P. P. Vaishnava, “Bandgap engineering by tuning particle size and crystallinity of SnO2-Fe2O3 nanocrystalline composite thin films,” Appl. Phys. Lett. 93, 231909 (2008). [CrossRef]
  30. G. Seeta, R. Raju, and S. Buddhudu, “Emission analysis of Tb3+:MgLaLiSi2O7 powder phosphor,” Mater. Lett. 62, 1259–1262 (2008). [CrossRef]
  31. K. Y. Jung, H. W. Lee, Y. C. Kang, S. B. Park, and Y. S. Yang, “Luminescent properties of (Ba,Sr)MgAl10O17:Mn, Eu green phosphor prepared by spray pyrolysis under VUV excitation,” Chem. Mater. 17, 2729–2734 (2005). [CrossRef]
  32. R. Salimi, H. Sameie, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, H. Eivaz Mohammadloo, F. Nargesian, and M. Tahriri, “Sol-gel synthesis, structural and optical characteristics of Sr1−xZn2Si2yO7+δEu2+ as a potential nanocrystalline phosphor for near-ultraviolet white light-emitting diodes,” J. Mater. Sci. 47, 2658–2664 (2012). [CrossRef]
  33. H. Sameie, R. Salimi, A. A. S. Alvani, A. A. Sarabi, F. Moztarzadeh, M. A. M. Farsi, H. E. Mohammadloo, M. S. Alvani, and M. Tahriri, “A nanostructure phosphor: effect of process parameters on the photoluminescence properties for near-UV WLED applications,” J. Inorg. Organomet. Polym. Mater. 22, 737–743 (2012). [CrossRef]
  34. P. Huang, C. Cui, and S. Wang, “Influence of calcination temperature on luminescent properties of Sr3Al2O6:Eu2+, Dy3+ phosphors prepared by sol-gel-combustion processing,” Opt. Mater. 32, 184–189 (2009). [CrossRef]
  35. S. Ye, Z. S. Liu, X. T. Wang, J. G. Wang, L. X. Wang, and X. P. Jing, “Emission properties of Eu2+, Mn2+ in MAl2Si2O8 (M=Sr, Ba),” J. Lumin. 129, 50–54 (2009). [CrossRef]
  36. C. Chartier, C. Barthou, P. Benalloul, and J. M. Frigerio, “Photoluminescence of Eu2+ in SrGa2S4”, J. Lumin. 111, 147–158 (2005). [CrossRef]
  37. R. Pang, C. Li, L. Shi, and Q. A. Su, “Novel blue-emitting long-lasting proyphosphate phosphor Sr2P2O7:Eu2+, Y3+,” J. Phys. Chem. Solids 70, 303–306 (2009).
  38. P. I. Paulose, G. Jose, V. Thomas, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids Suppl. 64, 841–846 (2003).
  39. R. Reisfeld, E. Greenberg, R. Velapoldi, and B. Barnett, “Luminescence quantum efficiency of Gd and Tb in borate glasses and the mechanism of energy transfer between them,” J. Chem. Phys. 56, 1698–1715 (1972). [CrossRef]
  40. G. Blasse, “Energy transfer in oxidic phosphors,” Philips Res. Rep. 24, 131 (1969).
  41. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953). [CrossRef]
  42. H. P. You, J. L. Zhang, G. Y. Hong, and H. J. Zhang, “Luminescent properties of Mn2+ in hexagonal aluminates under ultraviolet and vacuum ultraviolet excitation,” J. Phys. Chem. C 111, 10657–10661 (2007). [CrossRef]
  43. K. H. Kwon, W. B. Im, H. S. Jang, H. S. Yoo, and D. Y. Jeon, “Luminescence properties and energy transfer of site-sensitive Ca6−x–yMgx–z(PO4)4:Euy2+, Mnz2+ phosphors and their application to near-UV LED-based white LEDs,” Inorg. Chem. 48, 11525–11532 (2009). [CrossRef]
  44. C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity coordinates,” Color Res. Appl. 17, 142–144 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited