OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 6 — Jun. 1, 2013
  • pp: 1775–1785

Analysis of shot noise in the detection of ultrashort optical pulse trains

Franklyn Quinlan, Tara M. Fortier, Haifeng Jiang, and Scott A. Diddams  »View Author Affiliations

JOSA B, Vol. 30, Issue 6, pp. 1775-1785 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (675 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a frequency domain model of shot noise in the photodetection of ultrashort optical pulse trains using a time-varying analysis. Shot-noise-limited photocurrent power spectral densities, signal-to-noise expressions, and shot-noise spectral correlations are derived that explicitly include the finite response of the photodetector. It is shown that the strength of the spectral correlations in the shot noise depends on the optical pulsewidth, and that these correlations can create orders-of-magnitude imbalance between the shot-noise-limited amplitude and phase noise of photonically generated microwave carriers. It is also shown that only by accounting for spectral correlations can shot noise be equated with the fundamental quantum limit in the detection of optical pulse-to-pulse timing jitter.

OCIS Codes
(040.5160) Detectors : Photodetectors
(320.0320) Ultrafast optics : Ultrafast optics
(350.4010) Other areas of optics : Microwaves

ToC Category:

Original Manuscript: February 8, 2013
Revised Manuscript: May 3, 2013
Manuscript Accepted: May 10, 2013
Published: May 31, 2013

Franklyn Quinlan, Tara M. Fortier, Haifeng Jiang, and Scott A. Diddams, "Analysis of shot noise in the detection of ultrashort optical pulse trains," J. Opt. Soc. Am. B 30, 1775-1785 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007). [CrossRef]
  2. J. Kim, J. A. Cox, J. Chen, and F. X. Kartner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2, 733–736 (2008). [CrossRef]
  3. J. F. Cliche and B. Shillue, “Precision timing control for radioastronomy—Maintaining femtosecond synchronization in the Atacama large millimeter array,” IEEE Control Syst. Mag. 26(1), 19–26 (2006). [CrossRef]
  4. P. K. Kondratko, A. Leven, Y. K. Chen, J. Lin, U. V. Koc, K. Y. Tu, and J. Lee, “12.5 GHz optically sampled interference-based photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 17, 2727–2729 (2005). [CrossRef]
  5. N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32, 865–867 (2007). [CrossRef]
  6. I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wireless Compon. Lett. 15, 226–228 (2005). [CrossRef]
  7. J. A. Scheer and J. L. Kurtz, Coherent Radar Performance Estimation (Artech House, 1993).
  8. G. Santarelli, C. Audoin, A. Makdissi, P. Laurent, G. J. Dick, and A. Clairon, “Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 887–894 (1998). [CrossRef]
  9. J. Millo, M. Abgrall, M. Lours, E. M. L. English, H. Jiang, J. Guena, A. Clairon, M. E. Tobar, S. Bize, Y. Le Coq, and G. Santarelli, “Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock,” Appl. Phys. Lett. 94, 141105 (2009). [CrossRef]
  10. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5, 425–429 (2011). [CrossRef]
  11. W. C. Swann, E. Baumann, F. R. Giorgetta, and N. R. Newbury, “Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator,” Opt. Express 19, 24387–24395 (2011). [CrossRef]
  12. Z. Li, Y. Fu, M. Piels, H. P. Pan, A. Beling, J. E. Bowers, and J. C. Campbell, “High-power high-linearity flip-chip bonded modified uni-traveling carrier photodiode,” Opt. Express 19, B385–B390 (2011). [CrossRef]
  13. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 1991), Chap. 17, pp. 675–678.
  14. R. W. Boyd, Radiometry and the Detection of Optical Radiation, Pure and Applied Optics (Wiley, 1983), Chap. 8, pp. 119–127.
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995), Chap. 9., pp. 452–458.
  16. N. Campbell, “The study of discontinuous phenomena,” Proc. Cambridge Philos. Soc. 15, 117–136 (1909).
  17. N. Campbell, “Discontinuities in light emission,” Proc. Cambr. Phil. Soc. 15, 310–328 (1910).
  18. S. O. Rice, “Mathematical analysis of random noise,” Bell Syst. Tech. J. 23, 282–332 (1944).
  19. P. J. Winzer, “Shot-noise formula for time-varying photon rates: a general derivation,” J. Opt. Soc. Am. B 14, 2424–2429 (1997). [CrossRef]
  20. T. M. Niebauer, R. Schilling, K. Danzmann, A. Rudiger, and W. Winkler, “Nonstationary shot noise and its effect on the sensitivity of interferometers,” Phys. Rev. A 43, 5022–5029 (1991). [CrossRef]
  21. B. J. Meers and K. A. Strain, “Modulation, signal, and quantum noise in interferometers,” Phys. Rev. A 44, 4693–4703 (1991). [CrossRef]
  22. M. B. Gray, A. J. Stevenson, H. A. Bachor, and D. E. McClelland, “Harmonic demodulation of nonstationary shot noise,” Opt. Lett. 18, 759–761 (1993). [CrossRef]
  23. M. Rakhmanov, “Demodulation of intensity and shot noise in the optical heterodyne detection of laser interferometers for gravitational waves,” Appl. Opt. 40, 6596–6605 (2001). [CrossRef]
  24. A. N. Bruyevich, “Fluctuations in autooscillators for periodically nonstationary shot noise,” Telecommun. Radio Eng. (Engl. Trans.) Part 2 23, 91–96 (1968).
  25. L. Roschier, T. T. Heikkila, and P. Hakonen, “Cyclostationary shot noise in mesoscopic measurements,” J. Appl. Phys. 96, 5927–5929 (2004). [CrossRef]
  26. W. A. Gardner, A. Napolitano, and L. Paura, “Cyclostationarity: half a century of research,” Signal Process. 86, 639–697 (2006). [CrossRef]
  27. J. Graffeuil, R. A. Liman, J. L. Muraro, and O. Llopis, “Cyclostationary shot-noise measurements in RF Schottky-Barrier diode detectors,” IEEE Electron Device Lett. 31, 74–76 (2010). [CrossRef]
  28. F. Quinlan, T. M. Fortier, H. Jiang, A. Hati, C. Nelson, Y. Fu, J. C. Campbell, and S. A. Diddams, “Exploiting shot noise correlations in the photodetection of ultrashort optical pulse trains,” Nat. Photonics7, 290–293 (2013).
  29. R. Paschotta, “Noise of mode-locked lasers (Part II): timing jitter and other fluctuations,” Appl. Phys. B 79, 163–173 (2004). [CrossRef]
  30. J. Taylor, S. Datta, A. Hati, C. Nelson, F. Quinlan, A. Joshi, and S. Diddams, “Characterization of power-to-phase conversion in high-speed P-I-N photodiodes,” IEEE Photon. J. 3, 140–151 (2011). [CrossRef]
  31. W. Zhang, T. Li, M. Lours, S. Seidelin, G. Santarelli, and Y. Le Coq, “Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation,” Appl. Phys. B 106, 301–308 (2012). [CrossRef]
  32. D. F. Walls, “Squeezed states of light,” Nature 306, 141–146 (1983). [CrossRef]
  33. B. Saleh, Photoelectron Statistics, Springer Series in Optical Sciences (Springer-Verlag, 1978), Chap. 5., vol. 6, pp. 161–164.
  34. W. A. Gardner, Statistical Spectral Analysis: A Nonprobabalistic Theory, Prentice Hall Information and System Sciences Series (Prentice-Hall, 1988), Chap. 1, pp. 3–33.
  35. R. Paschotta, B. Rudin, A. Schlatter, G. J. Spuhler, L. Krainer, S. C. Zeller, N. Haverkamp, H. R. Telle, and U. Keller, “Relative timing jitter measurements with an indirect phase comparison method,” Appl. Phys. B 80, 185–192 (2005). [CrossRef]
  36. H. F. Jiang, J. Taylor, F. Quinlan, T. Fortier, and S. A. Diddams, “Noise floor reduction of an Er:fiber laser-based photonic microwave generator,” IEEE Photon. J. 3, 1004–1012 (2011). [CrossRef]
  37. W. B. Davenport and W. L. Root, An Introduction to the Theory of Random Signals and Noise (IEEE, 1987), Chap. 7, pp. 119–123.
  38. R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE J. Sel. Top. Quantum Electron. 7, 641–655 (2001). [CrossRef]
  39. P.-L. Liu, K. J. Williams, M. Y. Frankel, and R. D. Esman, “Saturation characteristics of fast photodetectors,” IEEE Trans. Microwave Theory Tech. 47, 1297–1303 (1999). [CrossRef]
  40. S. A. Diddams, M. Kirchner, T. Fortier, D. Braje, A. M. Weiner, and L. Hollberg, “Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb,” Opt. Express 17, 3331–3340 (2009). [CrossRef]
  41. K. J. Williams, R. D. Esman, and M. Dagenais, “Effects of high space-charge fields on the response of microwave photodetectors,” IEEE Photon. Technol. Lett. 6, 639–641 (1994). [CrossRef]
  42. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley-Interscience, 2002), Chap. 3., pp. 114–116.
  43. Characterization of Clocks and Oscillators: NIST Technical Note 1337 (US GPO, Washington, DC, 1990).
  44. J. J. McFerran, E. N. Ivanov, A. Bartels, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, “Low noise synthesis of microwave signals from an optical source,” IEEE Electron Device Lett. 41, 650–651 (2005).
  45. E. Rubiola, E. Salik, N. Yu, and L. Maleki, “Flicker noise in high speed p-i-n photodiodes,” IEEE Trans. Microwave Theory Tech. 54, 816–820 (2006). [CrossRef]
  46. F. Quinlan, S. Gee, S. Ozharar, and P. J. Delfyett, “Ultralow-jitter and amplitude-noise semiconductor-based actively mode-locked laser,” Opt. Lett. 31, 2870–2872 (2006). [CrossRef]
  47. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, “Remote transfer of ultrastable frequency references via fiber networks,” Rev. Sci. Instrum. 78, 021101 (2007). [CrossRef]
  48. F. Quinlan, T. M. Fortier, M. S. Kirchner, J. A. Taylor, M. J. Thorpe, N. Lemke, A. D. Ludlow, Y. Y. Jiang, and S. A. Diddams, “Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider,” Opt. Lett. 36, 3260–3262 (2011). [CrossRef]
  49. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986). [CrossRef]
  50. C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys. 68, 801–853 (1996). [CrossRef]
  51. R. E. Slusher and B. Yurke, “Squeezed light for coherent communications,” J. Lightwave Technol. 8, 466–477 (1990). [CrossRef]
  52. A. Haboucha, W. Zhang, T. Li, M. Lours, A. N. Luiten, Y. Le Coq, and G. Santarelli, “Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation,” Opt. Lett. 36, 3654–3656 (2011). [CrossRef]
  53. J. D. Deschenes and J. Genest, “Heterodyne beats between a continuous-wave laser and a frequency comb beyond the shot-noise limit of a single comb mode,” Phys. Rev. A 87, 023802 (2013). [CrossRef]
  54. A. Yariv, “Signal-to-noise considerations in fiber links with periodic or distributed optical amplification,” Opt. Lett. 15, 1064–1066 (1990). [CrossRef]
  55. N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol. 7, 1071–1082 (1989). [CrossRef]
  56. S. Y. Gee, F. Quinlan, S. Ozharar, and P. J. Delfyett, “Correlation of supermode noise of harmonically mode-locked lasers,” J. Opt. Soc. Am. B 24, 1490–1497 (2007). [CrossRef]
  57. G. Cibiel, M. Regis, E. Tournier, and O. Llopis, “AM noise impact on low level phase noise measurements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 784–788 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited