OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 7 — Jul. 1, 2013
  • pp: 1786–1793

Two-dimensional intraband solitons in lattice potentials with local defects and self-focusing nonlinearity

Jianhua Zeng and Boris A. Malomed  »View Author Affiliations

JOSA B, Vol. 30, Issue 7, pp. 1786-1793 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (788 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is commonly known that stable bright solitons in periodic potentials, which represent gratings in photonics/plasmonics, or optical lattices in quantum gases, exist either in the spectral semi-infinite gap (SIG) or in finite bandgaps. Using numerical methods, we demonstrate that, under the action of the cubic self-focusing nonlinearity, defects in the form of “holes” in two-dimensional (2D) lattices support continuous families of 2D solitons embedded into the first two Bloch bands of the respective linear spectrum, where solitons normally do not exist. The two families of the embedded defect solitons (EDSs) are found to be continuously linked by the branch of gap defect solitons (GDSs) populating the first finite bandgap. Further, the EDS branch traversing the first band links the GDS family with the branch of regular defect-supported solitons populating the SIG. Thus, we construct a continuous chain of regular, embedded, and gap-mode solitons (“superfamily”) threading the entire bandgap structure considered here. The EDSs are stable in the first Bloch band, and partly stable in the second. They exist with the norm exceeding a minimum value; hence they do not originate from linear defect modes. Further, we demonstrate that double, triple, and quadruple lattice defects support stable dipole-mode solitons and vortices.

© 2013 Optical Society of America

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(350.7420) Other areas of optics : Waves
(020.1475) Atomic and molecular physics : Bose-Einstein condensates
(230.5298) Optical devices : Photonic crystals

ToC Category:
Atomic and Molecular Physics

Original Manuscript: January 3, 2013
Revised Manuscript: March 28, 2013
Manuscript Accepted: May 6, 2013
Published: June 5, 2013

Jianhua Zeng and Boris A. Malomed, "Two-dimensional intraband solitons in lattice potentials with local defects and self-focusing nonlinearity," J. Opt. Soc. Am. B 30, 1786-1793 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  2. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  3. F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002). [CrossRef]
  4. S. A. Darmanyan and A. V. Zayats, “Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study,” Phys. Rev. B 67, 035424 (2003). [CrossRef]
  5. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004). [CrossRef]
  6. J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sanchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93, 256804 (2004). [CrossRef]
  7. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 912–918 (2006). [CrossRef]
  8. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007). [CrossRef]
  9. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008). [CrossRef]
  10. P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010). [CrossRef]
  11. G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. A. Vincenti, and A. Alú, “Transmission resonances in plasmonic metallic gratings,” J. Opt. Soc. Am. B 28, 253–264 (2011). [CrossRef]
  12. D. de Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Adv. 1, 032151 (2011). [CrossRef]
  13. I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109, 203903 (2012). [CrossRef]
  14. L. Dal Negro and S. V. Boriskina, “Deterministic aperiodic nanostructures for photonics and plasmonics applications,” Laser Photon. Rev. 6, 178–218 (2012). [CrossRef]
  15. C. J. Pethick and H. Smith, Bose-Einstein Condensate in Dilute Gas (Cambridge University, 2008).
  16. V. A. Brazhnyi and V. V. Konotop, “Theory of nonlinear matter waves in optical lattices,” Mod. Phys. Lett. B 18, 627–651 (2004). [CrossRef]
  17. O. Morsch and M. Oberthaler, “Dynamics of Bose-Einstein condensates in optical lattices,” Rev. Mod. Phys. 78, 179–215 (2006). [CrossRef]
  18. H. T. C. Stoof, K. B. Gubbels, and D. B. M. Dickerscheid, Ultracold Quantum Fields (Springer, 2009).
  19. B. A. Malomed, D. Mihalache, F. Wise, and L. Torner, “Spatiotemporal optical solitons,” J. Opt. B 7, R53–R72 (2005). [CrossRef]
  20. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, “Soliton shape and mobility control in optical lattices,” Progress in Optics 52, 63–148 (2009). [CrossRef]
  21. D. E. Pelinovsky, Localization in Periodic Potential: From Schrödinger Operators to the Gross-Pitaevskii Equation (Cambridge University, 2011).
  22. T. Anker, M. Albiez, R. Gati, S. Hunsmann, B. Eiermann, A. Trombettoni, and M. K. Oberthaler, “Nonlinear self-trapping of matter waves in periodic potentials,” Phys. Rev. Lett. 94, 020403 (2005). [CrossRef]
  23. T. J. Alexander, E. A. Ostrovskaya, and Y. S. Kivshar, “Self-trapped nonlinear matter waves in periodic potentials,” Phys. Rev. Lett. 96, 040401 (2006). [CrossRef]
  24. F. H. Bennet, T. J. Alexander, F. Haslinger, A. Mitchell, D. N. Neshev, and Y. S. Kivshar, “Observation of nonlinear self-trapping of broad beams in defocusing waveguide arrays,” Phys. Rev. Lett. 106, 093901 (2011). [CrossRef]
  25. J. Fujioka and A. Espinosa, “Soliton-like solution of an extended NLS equation existing in resonance with linear dispersive waves,” J. Phys. Soc. Jpn. 66, 2601–2607 (1997). [CrossRef]
  26. J. Yang, B. A. Malomed, and D. J. Kaup, “Embedded solitons in second-harmonic-generating systems,” Phys. Rev. Lett. 83, 1958–1961 (1999). [CrossRef]
  27. A. R. Champneys and B. A. Malomed, “Moving embedded solitons,” J. Phys. A 32, L547–L553 (1999). [CrossRef]
  28. A. R. Champneys, B. A. Malomed, J. Yang, and D. J. Kaup, “Embedded solitons: solitary waves in resonance with the linear spectrum,” Physica D 152, 340–354 (2001). [CrossRef]
  29. J. Atai and B. A. Malomed, “Solitary waves in systems with separated Bragg grating and nonlinearity,” Phys. Rev. E 64, 066617 (2001). [CrossRef]
  30. D. E. Pelinovsky and J. Yang, “A normal form for nonlinear resonance of embedded solitons,” Proc. R. Soc. A 458, 1469–1497 (2002). [CrossRef]
  31. A. Espinosa-Cerón, J. Fujioka, and A. Gómez-Rodrguez, “Embedded solitons: four-frequency radiation, front propagation and radiation inhibition,” Phys. Scr. 67, 314–324 (2003). [CrossRef]
  32. R. F. Rodrguez, J. A. Reyes, A. Espinosa-Cerón, J. Fujioka, and B. A. Malomed, “Standard and embedded solitons in nematic optical fibers,” Phys. Rev. E 68, 036606 (2003). [CrossRef]
  33. A. Gubeskys and B. A. Malomed, “Spontaneous soliton symmetry breaking in two-dimensional coupled Bose-Einstein condensates supported by optical lattices,” Phys. Rev. A 76, 043623 (2007). [CrossRef]
  34. J. Yang, “Dynamics of embedded solitons in the extended Korteweg–de Vries equations,” Stud. Appl. Math. 106, 337–365 (2001). [CrossRef]
  35. J. Yang and T. R. Akylas, “Continuous families of embedded solitons in the third-order nonlinear Schrödinger equation,” Stud. Appl. Math. 111, 359–375 (2003). [CrossRef]
  36. J. Yang, “Stable embedded solitons,” Phys. Rev. Lett. 91, 143903 (2003). [CrossRef]
  37. W. C. K. Mak, B. A. Malomed, and P. L. Chu, “Symmetric and asymmetric solitons in linearly coupled Bragg gratings,” Phys. Rev. E 69, 066610 (2004). [CrossRef]
  38. F. C. Moreira, V. V. Konotop, and B. A. Malomed, “Solitons in PT-symmetric periodic systems with the quadratic nonlinearity,” Phys. Rev. A 87, 013832 (2013). [CrossRef]
  39. J. Yang, “Fully localized two-dimensional embedded solitons,” Phys. Rev. A 82, 053828 (2010). [CrossRef]
  40. S. Noda, A. Chutinan, and M. Imada, “Trapping, and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000). [CrossRef]
  41. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429, 538–542 (2004). [CrossRef]
  42. S. A. Rinne, F. Garca-Santamara, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2, 52–56 (2007). [CrossRef]
  43. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996). [CrossRef]
  44. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999). [CrossRef]
  45. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991). [CrossRef]
  46. M. Bayindir, B. Temelkuran, and E. Ozbay, “Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2140–2143 (2000). [CrossRef]
  47. V. Yannopapas, N. Stefanou, and A. Modinos, “Effect of stacking faults on the optical properties of inverted opals,” Phys. Rev. Lett. 86, 4811–4814 (2001). [CrossRef]
  48. A. A. Sukhorukov and Y. S. Kivshar, “Nonlinear localized waves in a periodic medium,” Phys. Rev. Lett. 87, 083901 (2001). [CrossRef]
  49. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef]
  50. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005). [CrossRef]
  51. E. Gavartin, R. Braive, I. Sagnes, O. Arcizet, A. Beveratos, T. J. Kippenberg, and I. Robert-Philip, “Optomechanical coupling in a two-dimensional photonic crystal defect cavity,” Phys. Rev. Lett. 106, 203902 (2011). [CrossRef]
  52. S. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998). [CrossRef]
  53. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305, 227–229 (2004). [CrossRef]
  54. J. Yang and Z. Chen, “Defect solitons in photonic lattices,” Phys. Rev. E 73, 026609 (2006). [CrossRef]
  55. I. Makasyuk, Z. Chen, and J. Yang, “Band-gap guidance in optically induced photonic lattices with a negative defect,” Phys. Rev. Lett. 96, 223903 (2006). [CrossRef]
  56. M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, and M. Segev, “Amorphous photonic lattices: band gaps, effective mass, and suppressed transport,” Phys. Rev. Lett. 106, 193904 (2011). [CrossRef]
  57. Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic band gaps in two dimensional photonic quasicrystals,” Phys. Rev. Lett. 80, 956–959 (1998). [CrossRef]
  58. B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D. N. Christodoulides, and J. W. Fleischer, “Wave and defect dynamics in nonlinear photonic quasicrystals,” Nature 440, 1166–1169 (2006). [CrossRef]
  59. M. I. Molina and G. Tsironis, “Nonlinear impurities in a linear chain,” Phys. Rev. B 47, 15330–15333 (1993). [CrossRef]
  60. B. C. Gupta and K. Kundu, “Formation of stationary localized states due to nonlinear impurities using the discrete nonlinear Schrödinger equation,” Phys. Rev. B 55, 894–905 (1997). [CrossRef]
  61. B. C. Gupta and K. Kundu, “Stationary localized states due to a nonlinear dimeric impurity embedded in a perfect one-dimensional chain,” Phys. Rev. B 55, 11033–11036 (1997). [CrossRef]
  62. E. Bulgakov, K. Pichugin, and A. Sadreev, “Symmetry breaking for transmission in a photonic waveguide coupled with two off-channel nonlinear defects,” Phys. Rev. B 83, 045109 (2011). [CrossRef]
  63. V. A. Brazhnyi and B. A. Malomed, “Localization and delocalization of two-dimensional discrete solitons pinned to linear and nonlinear defects,” Phys. Rev. E 83, 016604 (2011). [CrossRef]
  64. V. A. Brazhnyi and B. A. Malomed, “Dragging two-dimensional discrete solitons by moving linear defects,” Phys. Rev. E 84, 016608 (2011). [CrossRef]
  65. T. Mayteevarunyoo, B. A. Malomed, and G. Dong, “Spontaneous symmetry breaking in a nonlinear double-well structure,” Phys. Rev. A 78, 053601 (2008). [CrossRef]
  66. N. Dror and B. A. Malomed, “Solitons supported by localized nonlinearities in periodic media,” Phys. Rev. A 83, 033828 (2011). [CrossRef]
  67. T. Mayteevarunyoo, B. A. Malomed, and A. Reoksabutr, “Spontaneous symmetry breaking of photonic and matter waves in two-dimensional pseudopotentials,” J. Mod. Opt. 58, 1977–1989 (2011). [CrossRef]
  68. V. A. Brazhnyi, V. V. Konotop, and V. M. Pérez-Garca, “Defect modes of a Bose-Einstein condensate in an optical lattice with a localized impurity,” Phys. Rev. A 74, 023614 (2006). [CrossRef]
  69. V. A. Brazhnyi, V. V. Konotop, and V. M. Pérez-Garca, “Driving defect modes of Bose-Einstein condensates in optical lattices,” Phys. Rev. Lett. 96, 060403 (2006). [CrossRef]
  70. Y. V. Kartashov, V. V. Konotop, V. A. Vysloukh, and L. Torner, “Dissipative defect modes in periodic structures,” Opt. Lett. 35, 1638–1640 (2010). [CrossRef]
  71. S. Longhi, “Bloch oscillations in tight-binding lattices with defects,” Phys. Rev. B 81, 195118 (2010). [CrossRef]
  72. S. Longhi, “Dynamic reflectionless defects in tight-binding lattices,” Phys. Rev. B 84, 193105 (2011). [CrossRef]
  73. A. A. Sukhorukov and Y. S. Kivshar, “Spatial optical solitons in nonlinear photonic crystals,” Phys. Rev. E 65, 036609 (2002). [CrossRef]
  74. A. Shapira, N. Voloch-Bloch, B. A. Malomed, and A. Arie, “Spatial quadratic solitons guided by narrow layers of a nonlinear material,” J. Opt. Soc. Am. B 28, 1481–1489 (2011). [CrossRef]
  75. V. A. Brazhnyi and B. A. Malomed, “Symmetric and asymmetric localized modes in linear lattices with an embedded pair of χ(2)-nonlinear sites,” Phys. Rev. A 86, 013829 (2012). [CrossRef]
  76. F. C. Moreira, F. K. Abdullaev, V. V. Konotop, and A. V. Yulin, “Localized modes in χ(2) media with PT—symmetric localized potential,” Phys. Rev. A 86, 053815 (2012). [CrossRef]
  77. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997). [CrossRef]
  78. M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999). [CrossRef]
  79. Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in a disordered photonic crystal,” Phys. Rev. B 60, 1555–1562 (1999). [CrossRef]
  80. H. Cao, J. Y. Xu, E. W. Seelig, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76, 2997–2999 (2000). [CrossRef]
  81. C. Vanneste and P. Sebbah, “Selective excitation of localized modes in active random media,” Phys. Rev. Lett. 87, 183903 (2001). [CrossRef]
  82. M. Storzer, P. Gross, C. M. Aegerter, and G. Maret, “Observation of the critical regime near Anderson localization of light,” Phys. Rev. Lett. 96, 063904 (2006). [CrossRef]
  83. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446, 52–55 (2007). [CrossRef]
  84. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100, 013906 (2008). [CrossRef]
  85. U. Gavish and Y. Castin, “Matter-wave localization in disordered cold atom lattices,” Phys. Rev. Lett. 95, 020401 (2005). [CrossRef]
  86. J. Billy, V. Josse, Z. C. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453, 891–894 (2008). [CrossRef]
  87. G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, “Anderson localization of a non-interacting Bose–Einstein condensate,” Nature 453, 895–898 (2008). [CrossRef]
  88. L. Sanchez-Palencia and M. Lewenstein, “Disordered quantum gases under control,” Nat. Phys. 6, 87–95 (2010). [CrossRef]
  89. Y. V. Kartashov, B. A. Malomed, and L. Torner, “Solitons in nonlinear lattices,” Rev. Mod. Phys. 83, 247–305 (2011). [CrossRef]
  90. J. Zeng and B. A. Malomed, “Stabilization of one-dimensional solitons against the critical collapse by quintic nonlinear lattices,” Phys. Rev. A 85, 023824 (2012). [CrossRef]
  91. J. Zeng and B. A. Malomed, “Two-dimensional solitons and vortices in media with incommensurate linear and nonlinear lattice potentials,” Phys. Scr. T149, 014035 (2012). [CrossRef]
  92. S. Ghanbari, T. D. Kieu, A. Sidorov, and P. Hannaford, “Permanent magnetic lattices for ultracold atoms and quantum degenerate gases,” J. Phys. B 39, 847–860 (2006). [CrossRef]
  93. A. Abdelrahman, P. Hannaford, and K. Alameh, “Adiabatically induced coherent Josephson oscillations of ultracold atoms in an asymmetric two-dimensional magnetic lattice,” Opt. Express 17, 24358–24370 (2009). [CrossRef]
  94. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998). [CrossRef]
  95. J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D 36, R1–R16 (2003). [CrossRef]
  96. O. Painter, J. Vučković, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B 16, 275–285 (1999). [CrossRef]
  97. A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude, “Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal,” Phys. Rev. B 68, 214301 (2003). [CrossRef]
  98. S. R. Bickham and A. J. Sievers, “Intrinsic localized modes in a monatomic lattice with weakly anharmonic nearest-neighbor force constants,” Phys. Rev. B 43, 2339–2346 (1991). [CrossRef]
  99. H. R. Schober and B. B. Laird, “Localized low-frequency vibrational modes in glasses,” Phys. Rev. B 44, 6746–6754 (1991). [CrossRef]
  100. G. Kaczmarczyk, A. Kaschner, A. Hoffmann, and C. Thomsen, “Impurity-induced modes of Mg, As, Si, and C in hexagonal and cubic GaN,” Phys. Rev. B 61, 5353–5357 (2000). [CrossRef]
  101. G. Van de Walle and J. Neugebauer, “First-principles calculations for defects and impurities: applications to III-nitrides,” J. Appl. Phys. 95, 3851–3879 (2004). [CrossRef]
  102. E. A. Ostrovskaya and Y. S. Kivshar, “Matter-wave gap solitons in atomic band-gap structures,” Phys. Rev. Lett. 90, 160407 (2003). [CrossRef]
  103. E. A. Ostrovskaya and Y. S. Kivshar, “Photonic crystals for matter waves: Bose-Einstein condensates in optical lattices,” Opt. Express 12, 19–29 (2004). [CrossRef]
  104. Z. Shi and J. Yang, “Solitary waves bifurcated from Bloch-band edges in two-dimensional periodic media,” Phys. Rev. E 75, 056602 (2007). [CrossRef]
  105. N. Dror and B. A. Malomed, “Stability of dipole gap solitons in two-dimensional lattice potentials,” in Spectral Analysis, Stability and Bifurcations in Nonlinear Physical Systems, O. Kirillov and D. E. Pelinovsky, eds. (Wiley, 2013).
  106. M. Vakhitov and A. Kolokolov, “Stationary solutions of the wave equation in a medium with nonlinearity saturation,” Radiophys. Quantum Electron. 16, 783–789 (1973). [CrossRef]
  107. H. Sakaguchi and B. A. Malomed, “Dynamics of positive- and negative-mass solitons in optical lattices and inverted traps,” J. Phys. B 37, 1443–1459 (2004). [CrossRef]
  108. H. Sakaguchi and B. A. Malomed, “Two-dimensional loosely and tightly bound solitons in optical lattices and inverted traps,” J. Phys. B 37, 2225–2239 (2004). [CrossRef]
  109. M. Matuszewski, B. A. Malomed, and M. Trippenbach, “Competition between attractive and repulsive interactions in two-component Bose-Einstein condensates trapped in an optical lattice,” Phys. Rev. A 76, 043826 (2007). [CrossRef]
  110. S. K. Adhikari and B. A. Malomed, “Symbiotic gap and semigap solitons in Bose-Einstein condensates,” Phys. Rev. A 77, 023607 (2008). [CrossRef]
  111. B. B. Baizakov, B. A. Malomed, and M. Salerno, “Multidimensional solitons in periodic potentials,” Europhys. Lett. 63, 642–648 (2003). [CrossRef]
  112. J. Yang and Z. H. Musslimani, “Fundamental and vortex solitons in a two-dimensional optical lattice,” Opt. Lett. 28, 2094–2096 (2003). [CrossRef]
  113. H. Sakaguchi and B. A. Malomed, “Higher-order vortex solitons, multipoles, and supervortices on a square optical lattice,” Europhys. Lett. 72, 698–704 (2005). [CrossRef]
  114. R. Driben and B. A. Malomed, “Stabilization of two-dimensional solitons and vortices against supercritical collapse by lattice potentials,” Eur. Phys. J. D 50, 317–323 (2008). [CrossRef]
  115. J. Zeng and Y. Lan, “Two-dimensional solitons in PT linear lattice potentials,” Phys. Rev. E 85, 047601 (2012). [CrossRef]
  116. S. Hu and W. Hu, “Defect solitons in parity-time symmetric optical lattices with self-defocusing nonlinearity,” Opt. Commun. 294, 311–324 (2013). [CrossRef]
  117. H. Sakaguchi and B. A. Malomed, “Gap solitons in Ginzburg-Landau media,” Phys. Rev. E 77, 056606 (2008). [CrossRef]
  118. H. Sakaguchi and B. A. Malomed, “Two-dimensional dissipative gap solitons,” Phys. Rev. E 80, 026606 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited