OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 7 — Jul. 1, 2013
  • pp: 1804–1814

Theoretical method for states dynamics and entanglement optimization in bichromatically driven clusters of two and four resonantly interacting particles

Irina T. Basieva  »View Author Affiliations

JOSA B, Vol. 30, Issue 7, pp. 1804-1814 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1272 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bichromatic laser pumping is an effective tool to control (e.g., to drive into an entangled state) solid-state quantum bits of different nature. For clusters of resonantly interacting ions under bichromatic laser pumping, we present a theoretical approach and approximate analytical solution for quantum states dynamics. The solution provides an optimal ratio of laser pulse intensities needed for creating the maximally entangled states and performing quantum gates. Numerical simulation corroborates the analytical results.

© 2013 Optical Society of America

OCIS Codes
(000.6800) General : Theoretical physics
(030.1670) Coherence and statistical optics : Coherent optical effects
(200.4960) Optics in computing : Parallel processing
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 15, 2013
Revised Manuscript: April 24, 2013
Manuscript Accepted: May 3, 2013
Published: June 6, 2013

Irina T. Basieva, "Theoretical method for states dynamics and entanglement optimization in bichromatically driven clusters of two and four resonantly interacting particles," J. Opt. Soc. Am. B 30, 1804-1814 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ekert and R. Jozsa, “Quantum algorithms: entanglement-enhanced information processing,” Phil. Trans. R. Soc. A 356, 1769–1782 (1998). [CrossRef]
  2. G. Jaeger, Entanglement, Information, and the Interpretation of Quantum Mechanics (Springer, 2009).
  3. J. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University, 1987).
  4. J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, “Towards fault-tolerant quantum computing with trapped ions,” Nat. Phys. 4, 463–466 (2008). [CrossRef]
  5. G. Chen, N. H. Bonadeo, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, and L. J. Sham, “Optically induced entanglement of excitons in a single quantum dot,” Science 289, 1906–1909 (2000). [CrossRef]
  6. T. Unold, K. Mueller, C. Lienau, T. Elsaesser, and A. D. Wieck, “Optical control of excitons in a pair of quantum dots coupled by the dipole-dipole interaction,” Phys. Rev. Lett. 94, 137404 (2005). [CrossRef]
  7. G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060–1063 (1999). [CrossRef]
  8. S. K. Sekatskii, T. T. Basiev, I. T. Basieva, G. Dietler, V. V. Fedorov, A. Y. Karasik, Y. V. Orlovskii, and K. K. Pukhov, “Experimental preparation of entangled Bells vacuum–single exciton and vacuum–biexciton states for pair centers of neodymium ions in a crystal,” Opt. Commun. 259, 298–303 (2006). [CrossRef]
  9. Y. Khodorkovsky, G. Kurizki, and A. Vardi, “Decoherence and entanglement in a bosonic Josephson junction: Bose-enhanced quantum Zeno control of phase diffusion,” Phys. Rev. A 80, 023609 (2009). [CrossRef]
  10. S. K. Sekatskii, M. Chergui, and G. Dietler, “Coherent fluorescence resonance energy transfer: construction of nonlocal multiparticle entangled states and quantum computing,” Europhys. Lett. 63, 21–27 (2003). [CrossRef]
  11. V. V. Osiko, “Thermodynamics of optical centers in crystals CaF2-TR3+,” Sov. Phys. Solid State 7, 1294–1302 (1965).
  12. V. V. Osiko, Y. K. Voronko, A. M. Prokhorov, and I. A. Tscherbakov, “Investigation of the mechanism of the elementary act of excitation-energy transfer between rare-earth ions in crystals,” Sov. Phys. JETP 33, 510–515 (1971).
  13. T. T. Basiev, V. V. Fedorov, A. Ya. Karasik, and K. K. Pukhov, “Strong coherent interaction of Nd3+-Nd3+ pair ions in CaF2 crystal,” J. Lumin. 81, 189–197 (1999). [CrossRef]
  14. D. Petrosyan and G. Kurizki, “Scalable solid-state quantum processor using subradiant two-atom states,” Phys. Rev. Lett. 89, 207902 (2002). [CrossRef]
  15. V. V. Fedorov, W. Beck, T. T. Basiev, A. Y. Karasik, and C. Flytzanis, “Fine level splitting of aggregate neodymium centers in CaF2 crystals,” Chem. Phys. 257, 275–281 (2000). [CrossRef]
  16. K. Ver Steeg, A. Y. Karasik, R. Reeves, and T. T. Basiev, “Accumulated photon echo in CaF2–YF3:Nd3+ crystals,” J. Lumin. 60/61, 742–744 (1994). [CrossRef]
  17. V. Lupei, A. Lupei, C. Tiseanu, S. Georgescu, C. Stoicescu, and P. M. Nanau, “High-resolution optical spectroscopy of YAG:Nd: a test for structural and distribution models,” Phys. Rev. B 51, 8–17 (1995). [CrossRef]
  18. T. T. Basiev, A. Y. Karasik, V. V. Fedorov, and K. W. Ver Steeg, “Optical echo spectroscopy and phase relaxation of Nd3+ ions in CaF2 crystals,” Sov. Phys. JETP 86, 156–163 (1998). [CrossRef]
  19. I. T. Basieva, T. T. Basiev, G. Dietler, K. K. Pukhov, and S. K. Sekatskii, “Quantum control of exciton states in clusters of resonantly interacting fluorescent particles using biharmonic laser pumping,” Phys. Rev. B 74, 165329 (2006). [CrossRef]
  20. D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond Bell’s theorem,” in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed. (Kluwer, 1989), pp. 73–76.
  21. L. Quiroga and N. F. Johnson, “Entangled Bell and Greenberger-Horne-Zeilinger states of excitons in coupled quantum dots,” Phys. Rev. Lett. 83, 2270–2273 (1999). [CrossRef]
  22. E. Merzbacher, Quantum Mechanics (Wiley, 1998).
  23. R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954). [CrossRef]
  24. Z. Ficek and S. Swain, “Simulating quantum interference in a three-level system with perpendicular transition dipole moments,” Phys. Rev. A 69, 023401 (2004). [CrossRef]
  25. S. Swain, P. Zhou, and Z. Ficek, “Intensity-intensity correlations and quantum interference in a driven three-level atom,” Phys. Rev. A 61,043410 (2000). [CrossRef]
  26. M. Teodorescu-Frumosu and G. Jaeger, “Quantum Lorentz-group invariants of n-qubit systems,” Phys. Rev. A 67, 052305 (2003). [CrossRef]
  27. G. Jaeger, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entanglement, mixedness, and spin-flip symmetry in multiple-qubit systems,” http://arxiv.org/pdf/quant-ph/0307124.pdf .
  28. N. P. Erugin, Linear Systems of Ordinary Differential Equations with Periodic and Quasi-periodic Coefficients (USSR Academy of Sciences, 1963).
  29. T. T. Basiev, A. Y. Karasik, A. A. Kornienko, A. G. Papashvili, and K. K. Pukhov, “Supersensitive electronic transition in impurity Nd-Nd nanoclusters in CaF2 crystal,” JETP Lett. 78, 319–321 (2003). [CrossRef]
  30. M. Z. Smirnov, “Coherent effects in a three-level gas medium on exposure to a strong bichromatic pumping field and a weak probe wave,” J. Opt. Soc. Am. B 9, 2171–2178 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited