OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 7 — Jul. 1, 2013
  • pp: 1821–1826

Simple schemes for universal quantum gates with nitrogen-vacancy centers in diamond

Liu-Yong Cheng, Hong-Fu Wang, and Shou Zhang  »View Author Affiliations


JOSA B, Vol. 30, Issue 7, pp. 1821-1826 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001821


View Full Text Article

Enhanced HTML    Acrobat PDF (395 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose efficient schemes for universal quantum gates with the photon polarization states and electron spin states of nitrogen-vacancy (NV) centers in diamond embedded in optical microcavity. A hybrid polarization-spin controlled-NOT gate and a two-qubit controlled phase gate between NV centers in separated cavities are demonstrated in the weak-coupling regime without complex devices or interaction. The gates presented here are deterministic and can be applied directly to a variety of quantum information processing tasks. The feasibility analyses show that our schemes can be accomplished with high fidelity under current technologies and have wide potential applications in quantum communication and computation fields.

© 2013 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: March 26, 2013
Revised Manuscript: May 14, 2013
Manuscript Accepted: May 17, 2013
Published: June 10, 2013

Citation
Liu-Yong Cheng, Hong-Fu Wang, and Shou Zhang, "Simple schemes for universal quantum gates with nitrogen-vacancy centers in diamond," J. Opt. Soc. Am. B 30, 1821-1826 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-7-1821


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007). [CrossRef]
  2. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004). [CrossRef]
  3. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001). [CrossRef]
  4. M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010). [CrossRef]
  5. L.-M. Duan and C. Monroe, “Quantum networks with trapped ions,” Rev. Mod. Phys. 82, 1209–1224 (2010). [CrossRef]
  6. R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1015 (2008). [CrossRef]
  7. A. Imamog¯lu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999). [CrossRef]
  8. R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Rev. Mod. Phys. 79, 1217–1265 (2007). [CrossRef]
  9. Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006). [CrossRef]
  10. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006). [CrossRef]
  11. M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316 (2007). [CrossRef]
  12. P. Neumman, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008). [CrossRef]
  13. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009). [CrossRef]
  14. F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup, “Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate,” Phys. Rev. Lett. 93, 130501 (2004). [CrossRef]
  15. J. Wolters, A. W. Schell, G. Kewes, N. Nüsse, M. Schoengen, H. Döscher, T. Hannappel, B. Löchel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010). [CrossRef]
  16. P. E. Barclay, K.-M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009). [CrossRef]
  17. W.-L. Yang, Z.-Q. Yin, Z.-Y. Xu, M. Feng, and C. H. Oh, “Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities,” Phys. Rev. A 84, 043849 (2011). [CrossRef]
  18. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010). [CrossRef]
  19. W. L. Yang, Z. Q. Yin, Z. Y. Xu, M. Feng, and J. F. Du, “One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity,” Appl. Phys. Lett. 96, 241113 (2010). [CrossRef]
  20. P.-B. Li, S.-Y. Gao, and F.-L. Li, “Quantum-information transfer with nitrogen-vacancy centers coupled to a whispering-gallery microresonator,” Phys. Rev. A 83, 054306 (2011). [CrossRef]
  21. Q. Chen, W.-L. Yang, M. Feng, and J.-F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011). [CrossRef]
  22. A. Zheng, J. Li, R. Yu, X.-Y. Lü, and Y. Wu, “Generation of Greenberger–Horne–Zeilinger state of distant diamond nitrogen-vacancy centers via nanocavity input–output process,” Opt. Express 20, 16902–16912 (2012). [CrossRef]
  23. M. L. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  24. S. Zhang, X.-Q. Shao, L. Chen, Y.-F. Zhao, and K.-H. Yeon, “Robust SWAP gate on nitrogen-vacancy centres via quantum Zeno dynamics,” J. Phys. B 44, 075505 (2011). [CrossRef]
  25. X. Xu, Z. Wang, C. Duan, P. Huang, P. Wang, Y. Wang, N. Xu, X. Kong, F. Shi, X. Rong, and J. Du, “Coherence-protected quantum gate by continuous dynamical decoupling in diamond,” Phys. Rev. Lett. 109, 070502 (2012). [CrossRef]
  26. T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson, and V. V. Dobrovitski, “Decoherence-protected quantum gates for a hybrid solid-state spin register,” Nature 484, 82–86 (2012). [CrossRef]
  27. C. Y. Hu, W. J. Munro, and J. G. Rarity, “Deterministic photon entangler using a charged quantum dot inside a microcavity,” Phys. Rev. B 78, 125318 (2008). [CrossRef]
  28. J.-H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input–output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009). [CrossRef]
  29. A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013007 (2009). [CrossRef]
  30. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008). [CrossRef]
  31. C. Santori, D. Fattal, S. M. Spillane, M. Fiorentino, R. G. Beausoleil, A. D. Greentree, P. Olivero, M. Draganski, J. R. Rabeau, P. Reichart, S. Rubanov, D. N. Jamieson, and S. Prawer, “Coherent population trapping in diamond N-V centers at zero magnetic field,” Opt. Express 14, 7986–7994 (2006). [CrossRef]
  32. N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104303 (2006). [CrossRef]
  33. P. Tamarat, N. B. Manson, J. P. Harrison, R. L. McMurtrie, A. Nizovtsev, C. Santori, R. G. Beausoleil, P. Neumann, T. Gaebel, F. Jelezko, P. Hemmer, and J. Wrachtrup, “Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond,” New J. Phys. 10, 045004 (2008). [CrossRef]
  34. L. J. Rogers, S. Armstrong, M. J. Sellars, and N. B. Manson, “Infrared emission of the NV centre in diamond: Zeeman and uniaxial stress studies,” New J. Phys. 10, 103024 (2008). [CrossRef]
  35. Y. Ma, M. Rohlfing, and A. Gali, “Excited states of the negatively charged nitrogen-vacancy color center in diamond,” Phys. Rev. B 81, 041204 (2010). [CrossRef]
  36. P. Delaney, J. C. Greer, and J. A. Larsson, “Spin-polarization mechanisms of the nitrogen-vacancy center in diamond,” Nano Lett. 10, 610–614 (2010). [CrossRef]
  37. V. M. Acosta, A. Jarmola, E. Bauch, and D. Budker, “Optical properties of the nitrogen-vacancy singlet levels in diamond,” Phys. Rev. B 82, 201202 (2010). [CrossRef]
  38. M. W. Doherty, N. B. Manson, P. Delaney, and L. C. L. Hollenberg, “The negatively charged nitrogen-vacancy centre in diamond: the electronic solution,” New J. Phys. 13, 025019 (2011). [CrossRef]
  39. J. R. Maze, A. Gali, E. Togan, Y. Chu, A. Trifonov, E. Kaxiras, and M. D. Lukin, “Properties of nitrogen-vacancy centers in diamond: the group theoretic approach,” New J. Phys. 13, 025025 (2011). [CrossRef]
  40. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag1994).
  41. Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input–output process,” Phys. Rev. A 79, 064304 (2009). [CrossRef]
  42. C. Bonato, F. Haupt, S. S. R. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, “CNOT and Bell-state analysis in the weak-coupling cavity QED regime,” Phys. Rev. Lett. 104, 160503 (2010). [CrossRef]
  43. J.-J. Chen, J.-H. An, M. Feng, and G. Liu, “Teleportation of an arbitrary multipartite state via photonic Faraday rotation,” J. Phys. B 43, 095505 (2010). [CrossRef]
  44. K. Koshino, S. Ishizaka, and Y. Nakamura, “Deterministic photon–photon SWAP gate using a Λ system,” Phys. Rev. A 82, 010301(R) (2010). [CrossRef]
  45. A. B. Young, C. Y. Hu, and J. G. Rarity, “Generating entanglement with low Q-factor microcavities,” Phys. Rev. A 87, 012332 (2013). [CrossRef]
  46. M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007). [CrossRef]
  47. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1, 215–223 (2007). [CrossRef]
  48. L.-M. Duan, A. Kuzmich, and H. J. Kimble, “Cavity QED and quantum-information processing with “hot” trapped atoms,” Phys. Rev. A 67, 032305 (2003). [CrossRef]
  49. L.-M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004). [CrossRef]
  50. K. Koshino and Y. Matsuzaki, “Entangling homogeneously broadened matter qubits in the weak-coupling cavity-QED regime,” Phys. Rev. A 86, 020305(R) (2012). [CrossRef]
  51. R. Hanson, O. Gywat, and D. D. Awschalom, “Room-temperature manipulation and decoherence of a single spin in diamond,” Phys. Rev. B 74, 161203(R) (2006). [CrossRef]
  52. P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M. L. Markham, D. J. Twitchen, S. Pezzagna, J. Meijer, J. Twamley, F. Jelezko, and J. Wrachtrup, “Quantum register based on coupled electron spins in a room-temperature solid,” Nat. Phys. 6, 249–253 (2010). [CrossRef]
  53. F. Shi, X. Rong, N. Xu, Y. Wang, J. Wu, B. Chong, X. Peng, J. Kniepert, R.-S. Schoenfeld, W. Harneit, M. Feng, and J. Du, “Room-temperature implementation of the Deutsch–Jozsa algorithm with a single electronic spin in diamond,” Phys. Rev. Lett. 105, 040504 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited