OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 7 — Jul. 1, 2013
  • pp: 1827–1834

Multimaterial loops as the building block for a functional metasurface

Babak Memarzadeh and Hossein Mosallaei  »View Author Affiliations


JOSA B, Vol. 30, Issue 7, pp. 1827-1834 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001827


View Full Text Article

Enhanced HTML    Acrobat PDF (1309 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasmonic nanoloops have been shown to be capable candidates for creating building blocks of metasurfaces to manipulate light in desired ways. Multimaterial loop metasurfaces offer astonishing design flexibility for various purposes. Concentric loop nanoantennas can couple to each other strongly or weakly based on the relevant designs. The low-coupled multimaterial loops can be employed as a frequency selective surface with a number of separated bands. On the other hand one can take advantage of high coupling between the loops to achieve two different resonances; one will be a very high Q and sensitive mode and the other a radiating wideband low-loss resonance. In both resonances the building block has a subwavelength size. Here the performance of a periodic array of multimaterial loops is investigated by means of the finite-difference time-domain technique. Based on the performance of a single plasmonic loop building block with general Drude material the behavior of the multimaterial loop metasurface is investigated. We show how choosing the proper materials can control the resonance characteristics. The performance of multimaterial loops is studied by utilizing the induced net dipole moments on the concentric loops and appearance of Fano-like resonance in the high-coupled case is demonstrated. Moreover, the large field enhancement as a result of a subradiant resonance is studied. The sensitivity of the structure to the spacer layer permittivity and loss are investigated in detail.

© 2013 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(240.6680) Optics at surfaces : Surface plasmons
(260.3160) Physical optics : Interference
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 13, 2013
Revised Manuscript: April 17, 2013
Manuscript Accepted: May 13, 2013
Published: June 10, 2013

Citation
Babak Memarzadeh and Hossein Mosallaei, "Multimaterial loops as the building block for a functional metasurface," J. Opt. Soc. Am. B 30, 1827-1834 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-7-1827


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008). [CrossRef]
  2. J. I. L. Chen, Y. Chen, and D. S. Ginger, “Plasmonic nanoparticle dimers for optical sensing of DNA in complex media,” J. Am. Chem. Soc. 132, 9600–9601 (2010). [CrossRef]
  3. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22, 4794–4808 (2010). [CrossRef]
  4. B. Memarzadeh and H. Mosallaei, “Array of planar plasmonic scatterers functioning as light concentrator,” Opt. Lett. 36, 2569–2571 (2011). [CrossRef]
  5. Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84, 205428 (2011). [CrossRef]
  6. U. K. Chettiar, R. F. Garcia, S. A. Maier, and N. Engheta, “Enhancement of radiation from dielectric waveguides using resonant plasmonic coreshells,” Opt. Express 20, 16104–16112 (2012). [CrossRef]
  7. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2011). [CrossRef]
  8. A. Ahmadi, S. Saadat, and H. Mosallaei, “Resonance and Q performance of ellipsoidal ENG subwavelength radiators,” IEEE Antennas Propag. Mag. 59(3), 706–713 (2011). [CrossRef]
  9. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1, 59 (2010).
  10. B. Memarzadeh and H. Mosallaei, “Layered plasmonic tripods: an infrared frequency selective surface nanofilter,” J. Opt. Soc. Am. B 29, 2347–2351 (2012). [CrossRef]
  11. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011). [CrossRef]
  12. F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing,” ACS Nano 3, 643–652 (2009). [CrossRef]
  13. J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Shvets, P. Nordlander, and F. Capasso, “Fano-like interference in self-assembled plasmonic quadrumer clusters,” Nano Lett. 10, 4680–4685 (2010). [CrossRef]
  14. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010). [CrossRef]
  15. D. J. Lipomi, M. A. Kats, P. Kim, S. H. Kang, J. Aizenberg, F. Capasso, and G. M. Whitesides, “Fabrication and replication of arrays of single or multicomponent nanostructures by replica molding and mechanical sectioning,” ACS Nano 4, 4017–4026 (2010). [CrossRef]
  16. C. F. Bohren and D. R. Huffman, “Absorption and scattering by a sphere,” in Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998), pp. 82–129.
  17. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003). [CrossRef]
  18. Y. S. Kivshar, “Nonlinear optics: the next decade,” Opt. Express 16, 22126–22128 (2008). [CrossRef]
  19. P. Genevet, J.-P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, “Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings,” Nano Lett. 10, 4880–4883 (2010). [CrossRef]
  20. B. Memarzadeh Isfahani, T. Ahamdi Tameh, N. Granpayeh, and A. R. Maleki Javan, “All-optical NOR gate based on nonlinear photonic crystal microring resonators,” J. Opt. Soc. Am. B 26, 1097–1102 (2009). [CrossRef]
  21. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003). [CrossRef]
  22. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  23. H. Mosallaei, “FDTD-PLRC technique for modeling of anisotropic-dispersive media and metamaterial devices,” IEEE Trans. Electromagn. Compat. 49, 649–660 (2007). [CrossRef]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  25. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range [Invited],” Opt. Mater. Express 1, 1090–1099 (2011). [CrossRef]
  26. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010). [CrossRef]
  27. J. Sancho-Parramon and S. Bosch, “Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6, 8415–8423 (2012). [CrossRef]
  28. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94, 211902 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited