OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 7 — Jul. 1, 2013
  • pp: 1843–1852

Symmetric and asymmetric solitons in dual-core couplers with competing quadratic and cubic nonlinearities

Lazar Gubeskys and Boris A. Malomed  »View Author Affiliations


JOSA B, Vol. 30, Issue 7, pp. 1843-1852 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001843


View Full Text Article

Enhanced HTML    Acrobat PDF (1235 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider the model of a dual-core spatial-domain coupler with χ(2) and χ(3) nonlinearities acting in two parallel cores. We construct families of symmetric and asymmetric solitons in the system with self-defocusing χ(3) terms and test their stability. The transition from symmetric to asymmetric soliton branches and back to the symmetric ones proceeds via a bifurcation loop. Namely, a pair of stable asymmetric branches emerges from the symmetric family via a supercritical bifurcation; eventually, the asymmetric branches merge back into the symmetric one through a reverse bifurcation. The existence of the loop is explained by means of an extended version of the cascading approximation for the χ(2) interaction, which takes into regard the cross-phase modulation part of the χ(3) interaction. When the intercore coupling is weak, the bifurcation loop features a concave shape, with the asymmetric branches losing their stability at the turning points. In addition to the two-color solitons, which are built of the fundamental-frequency (FF) and second-harmonic (SH) components, in the case of the self-focusing χ(3) nonlinearity we also consider single-color solitons, which contain only the SH component but may be subject to the instability against FF perturbations. Asymmetric single-color solitons are always unstable, whereas the symmetric ones are stable, provided that they do not coexist with two-color counterparts. Collisions between tilted solitons are studied, too.

© 2013 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(230.4320) Optical devices : Nonlinear optical devices
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 13, 2013
Revised Manuscript: April 28, 2013
Manuscript Accepted: May 10, 2013
Published: June 10, 2013

Citation
Lazar Gubeskys and Boris A. Malomed, "Symmetric and asymmetric solitons in dual-core couplers with competing quadratic and cubic nonlinearities," J. Opt. Soc. Am. B 30, 1843-1852 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-7-1843


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. E 7, 118–120 (1961).
  2. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996). [CrossRef]
  3. G. New, Introduction to Nonlinear Optics (Cambridge University, 2011).
  4. C. Etrich, F. Lederer, B. A. Malomed, T. Peschel, and U. Peschel, “Optical solitons in media with a quadratic nonlinearity,” Prog. Opt. 41, 483–568 (2000). [CrossRef]
  5. A. V. Buryak, P. Di Trapani, D. V. Skryabin, and S. Trillo, “Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications,” Phys. Rep. 370, 63–235 (2002). [CrossRef]
  6. C. B. Clausen, O. Bang, and Y. S. Kivshar, “Spatial solitons and induced Kerr effects in quasi-phase-matched quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997). [CrossRef]
  7. O. Bang, C. B. Clausen, P. L. Christiansen, and L. Torner, “Engineering competing nonlinearities,” Opt. Lett. 24, 1413–1415 (1999). [CrossRef]
  8. P. Di Trapani, A. Bramati, S. Minardi, W. Chinaglia, C. Conti, S. Trillo, J. Kilius, and G. Valiulis, “Focusing versus defocusing nonlinearities due to parametric wave mixing,” Phys. Rev. Lett. 87, 183902 (2001). [CrossRef]
  9. T. Ellenbogen, A. Arie, and M. Solomon, “Noncollinear double quasi phase matching in one-dimensional poled crystal,” Opt. Lett. 32, 262–264 (2007). [CrossRef]
  10. J. F. Corney and O. Bang, “Modulational instability in periodic quadratic nonlinear materials,” Phys. Rev. Lett. 87, 133901 (2001). [CrossRef]
  11. M. Bache, O. Bang, W. Królikowski, J. Moses, and F. W. Wise, “Limits to compression with cascaded quadratic soliton compressors,” Opt. Express 16, 3273–3287 (2008). [CrossRef]
  12. J. M. Hickmann, A. S. L. Gomes, and C. B. de Araújo, “Observation of spatial cross-phase modulation effects in a self-defocusing nonlinear medium,” Phys. Rev. Lett. 68, 3547–3550 (1992). [CrossRef]
  13. H. Lee, W. R. Cho, J. H. Park, J. S. Kim, S. H. Park, and U. Kim, “Measurement of free-carrier nonlinearities in ZnSe based on the Z-scan technique with a nanosecond laser,” Opt. Lett. 19, 1116–1118 (1994). [CrossRef]
  14. M. Brambilla, L. A. Lugiato, F. Prati, L. Spinelli, and W. J. Firth, “Spatial soliton pixels in semiconductor devices,” Phys. Rev. Lett. 79, 2042–2045 (1997). [CrossRef]
  15. M. V. Komissarova and A. P. Sukhorukov, “Optical solitons in media with quadratic and cubic nonlinearities,” Bull. Russ. Acad. Sci. Phys. 56, 1995–1999 (1992).
  16. A. V. Buryak, Yu. S. Kivshar, and S. Trillo, “Optical solitons supported by competing nonlinearities,” Opt. Lett. 20, 1961–1963 (1995). [CrossRef]
  17. O. Bang, Yu. S. Kivshar, and A. V. Buryak, “Bright spatial solitons in defocusing Kerr media supported by cascaded nonlinearities,” Opt. Lett. 22, 1680–1682 (1997). [CrossRef]
  18. O. Bang, “Dynamical equations for wave packets in materials with both quadratic and cubic response,” J. Opt. Soc. Am. B 14, 51–61 (1997). [CrossRef]
  19. O. Bang, Yu. S. Kivshar, A. V. Buryak, A. De Rossi, and S. Trillo, “Two-dimensional solitary waves in media with quadratic and cubic nonlinearity,” Phys. Rev. E 58, 5057–5069 (1998). [CrossRef]
  20. J. F. Corney and O. Bang, “Solitons in quadratic nonlinear photonic crystals,” Phys. Rev. E 64, 047601 (2001). [CrossRef]
  21. E. M. Wright, G. I. Stegeman, and S. Wabnitz, “Solitary-wave decay and symmetry-breaking instabilities in two-mode fibers,” Phys. Rev. A 40, 4455–4466 (1989). [CrossRef]
  22. C. Paré and M. Fłorjańczyk, “Approximate model of soliton dynamics in all-optical couplers,” Phys. Rev. A 41, 6287–6295 (1990). [CrossRef]
  23. A. I. Maimistov, “Propagation of a light pulse in nonlinear tunnel-coupled optical waveguides,” Kvant. Elektron. 18, 758–761 (1991) [Sov. J. Quantum Electron. 21, 687–690 (1991)].
  24. M. Romagnoli, S. Trillo, and S. Wabnitz, “Soliton switching in nonlinear couplers,” Opt. Quantum Electron. 24, S1237–S1267 (1992). [CrossRef]
  25. N. Akhmediev and A. Ankiewicz, “Novel soliton states and bifurcation phenomena in nonlinear fiber couplers,” Phys. Rev. Lett. 70, 2395–2398 (1993). [CrossRef]
  26. P. L. Chu, B. A. Malomed, and G. D. Peng, “Soliton switching and propagation in nonlinear fiber couplers: analytical results,” J. Opt. Soc. Am. B 10, 1379–1385 (1993). [CrossRef]
  27. J. M. Soto-Crespo and N. Akhmediev, “Stability of the soliton states in a nonlinear fiber coupler,” Phys. Rev. E 48, 4710–4715 (1993). [CrossRef]
  28. B. A. Malomed, I. Skinner, P. L. Chu, and G. D. Peng, “Symmetric and asymmetric solitons in twin-core nonlinear optical fibers,” Phys. Rev. E 53, 4084–4091 (1996). [CrossRef]
  29. R. Driben and B. A. Malomed, “Stability of solitons in parity-time-symmetric couplers,” Opt. Lett. 36, 4323–4325 (2011). [CrossRef]
  30. N. V. Alexeeva, I. V. Barashenkov, A. A. Sukhorukov, and Y. S. Kivshar, “Optical solitons in PT-symmetric nonlinear couplers with gain and loss,” Phys. Rev. A 85, 063837 (2012). [CrossRef]
  31. W. C. K. Mak, B. A. Malomed, and P. L. Chu, “Solitons in coupled waveguides with quadratic nonlinearity,” Phys. Rev. E 55, 6134–6140 (1997). [CrossRef]
  32. W. C. K. Mak, B. A. Malomed, and P. L. Chu, “Asymmetric solitons in coupled second-harmonic-generating waveguides,” Phys. Rev. E 57, 1092–1103 (1998). [CrossRef]
  33. B. A Malomed, ed., Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations (Springer, 2013).
  34. L. Albuch and B. A. Malomed, “Transitions between symmetric and asymmetric solitons in dual-core systems with cubic-quintic nonlinearity,” Math. Comput. Simul. 74, 312–322 (2007).
  35. Z. Birnbaum and B. A. Malomed, “Families of spatial solitons in a two-channel waveguide with the cubic-quintic nonlinearity,” Physica D 237, 3252–3262 (2008). [CrossRef]
  36. R. Driben, B. A. Malomed, and P. L. Chu, “All-optical switching in a two-channel waveguide with cubic–quintic nonlinearity,” J. Phys. B 39, 2455–2466 (2006). [CrossRef]
  37. G. D. Peng, P. L. Chu, and A. Ankiewicz, “Soliton propagation in saturable nonlinear fiber couplers—variational and numerical results,” Int. J. Nonlinear Opt. Phys. 3, 69–87 (1994). [CrossRef]
  38. H. Hatami-Hanza, P. L. Chu, and G. D. Peng, “Optical switching in a coupler with saturable nonlinearity,” Opt. Quantum Electron. 26, S365–S372 (1994). [CrossRef]
  39. A. Ankiewicz, N. Akhmediev, and G. P. Peng, “Stationary soliton states in couplers with saturable nonlinearity,” Opt. Quantum Electron. 27, 193–200 (1995). [CrossRef]
  40. A. Ankiewicz, N. Akhmediev, and J. M. Soto-Crespo, “Novel bifurcation phenomena for solitons in nonlinear saturable couplers,” Opt. Commun. 116, 411–415 (1995). [CrossRef]
  41. R. Driben, B. A. Malomed, M. Gutin, and U. Mahlab, “Implementation of nonlinearity management for Gaussian pulses in a fiber-optic link by means of second-harmonic-generating modules,” Opt. Commun. 218, 93–104 (2003). [CrossRef]
  42. G. Iooss and D. D. Joseph, Elementary Stability and Bifurcation Theory (Springer, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited