OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 7 — Jul. 1, 2013
  • pp: 1864–1871

Effective permittivity and third-order nonlinear susceptibility for a dilute composite consisting of partially aligned nanorods

Yedidya Lior and Dan M. Marom  »View Author Affiliations

JOSA B, Vol. 30, Issue 7, pp. 1864-1871 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (712 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The expected permittivity and third-order nonlinear susceptibility of a composite consisting of semiconductor nanorods (NRs) dispersed in a polymer host are derived using a generalized Maxwell Garnett model under various NR axis orientation statistics, achieved by an aligning electric field. The semiconductor NRs are analyzed as prolate spheroids and modeled as more realistic capsule shapes. From the angular distribution function of the NRs, the composite macroscopic characteristics are found for low filling fractions. As the alignment field strength increases, the composite optical properties asymptotically converge toward the nematic case. Aligning fields of order 107V/m are required for the optical properties to increase to half the value between random orientation and nematic array composites.

© 2013 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: February 20, 2013
Revised Manuscript: May 15, 2013
Manuscript Accepted: May 15, 2013
Published: June 13, 2013

Yedidya Lior and Dan M. Marom, "Effective permittivity and third-order nonlinear susceptibility for a dilute composite consisting of partially aligned nanorods," J. Opt. Soc. Am. B 30, 1864-1871 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Trani, “Polarization anisotropy in the optical properties of silicon ellipsoids,” Surf. Sci. 601, 2702–2706 (2007). [CrossRef]
  2. J. Valenta, B. Bruhn, and J. Linnros, “Polarization of photoluminescence excitation and emission spectra of silicon nanorods within single Si/SiO2 nanowires,” Phys. Status Solidi C 8, 1017–1020 (2011). [CrossRef]
  3. Y. K. Olsson, G. Chen, R. Rapaport, D. T. Fuchs, V. C. Sundara, J. S. Steckel, M. G. Bawendi, A. Aharoni, and U. Banin, “Fabrication and optical properties of polymeric waveguides containing nanocrystalline quantum dots,” Appl. Phys. Lett. 85, 4469–4471 (2004). [CrossRef]
  4. G. Chen, R. Rapaport, D. T. Fuchs, L. Lucas, A. J. Lovinger, S. Vilan, A. Aharoni, and U. Banin, “Optical gain from InAs nanocrystal quantum dots in a polymer matrix,” Appl. Phys. Lett. 87, 251108 (2005). [CrossRef]
  5. C. Sciancalepore, T. Cassano, M. L. Curri, D. Mecerreyes, A. Valentini, A. Agostiano, R. Tommasi, and M. Striccoli, “TiO2 nanorods/PMMA copolymer-based nanocomposites: highly homogeneous linear and nonlinear optical material,” Nanotechnology 19, 205705 (2008). [CrossRef]
  6. J. M. Lamarre, F. Billard, and L. Martinu, “Local field calculations of the anisotropic nonlinear absorption coefficient of aligned gold nanorods embedded in silica,” J. Opt. Soc. Am. B 25, 961–971 (2008). [CrossRef]
  7. H. Sihvola, Electromagnetic Mixing Formulas and Applications (Institution of Engineering and Technology, 2008).
  8. S. Giordano, “Effective medium theory for dispersions of dielectric ellipsoids,” J. Electrost. 58, 59–76 (2003). [CrossRef]
  9. H. Sihvola and J. A. Kong, “Effective permittivity of dielectric mixtures,” IEEE Trans. Geosci. Remote Sens. 26, 420–429 (1988). [CrossRef]
  10. B. Weintraub, Y. Deng, and Z. L. Wang, “Position-controlled seedless growth of ZnO nanorod arrays on a polymer substrate via wet chemical synthesis,” J. Phys. Chem. C 111, 10162–10165 (2007). [CrossRef]
  11. C. Lai, Y. J. Lee, P. H. Yeh, and S. W. Lee, “Formation mechanism of SiGe nanorod arrays by combining nanosphere lithography and Au-assisted chemical etching,” Nanoscale Res. Lett. 7140 (2012).
  12. J. L. Baker, A. Widmer-Cooper, M. F. Toney, P. L. Geissler, and A. P. Alivisatos, “Device-scale perpendicular alignment of colloidal nanorods,” Nano Lett. 10, 195–201 (2010). [CrossRef]
  13. L. S. Li and A. P. Alivisatos, “Semiconductor nanorod liquid crystals and their assembly on a substrate,” Adv. Mater. 15, 408–411 (2003). [CrossRef]
  14. H. E. Ruda and A. Shik, “Nanorod dynamics in ac electric fields” Nanotechnology 21, 235502 (2010). [CrossRef]
  15. M. Shim and P. Guyot-Sionnest, “Permanent dipole moment and charges in colloidal semiconductor quantum dots,” J. Chem. Phys. 111, 6955–6964 (1999). [CrossRef]
  16. N. Venkatram, R. Sathyavathi, and D. Narayana Rao, “Size dependent multiphoton absorption and refraction of CdSe nanoparticles,” Opt. Express 15, 12258–12263 (2007). [CrossRef]
  17. J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London Ser. A 203, 385–420 (1904).
  18. J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46, 1614–1629 (1992). [CrossRef]
  19. L. D. Landau and E. M. Lifshitz, “A dielectric ellipsoid,” in Electrodynamics of Continuous Media, 2nd ed. (Pergamon, 1984), pp. 39–42.
  20. C. Pecharromán, J. Pérez-Juste, G. Mata-Osoro, L. M. Liz-Marzán, and P. Mulvaney, “Redshift of surface plasmon modes of small gold rods due to their atomic roughness and end-cap geometry,” Phys. Rev. B 77, 035418 (2008). [CrossRef]
  21. C. Sönnichsen and A. P. Alivisatos, “Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005). [CrossRef]
  22. L. S. Li and A. P. Alivisatos, “Origin and scaling of the permanent dipole moment in CdSe nanorods,” Phys. Rev. Lett. 90, 097402 (2003). [CrossRef]
  23. T. Nann and J. Schneider, “Origin of permanent electric dipole moments in wurtzite nanocrystals,” Chem. Phys. Lett. 384, 150–152 (2004). [CrossRef]
  24. Ruda and Shik calculated the ADF with the integration in the denominator over the interval [0,2π]. When examining the whole three-dimensional characteristics of the composite, θ is defined over the interval [0,π].
  25. The integration for θ is over d(cos θ)=sin θ·dθ. See, for example, the denominator of Eq. (7).
  26. X. L. Yang and S. W. Xie, “Expression of third-order effective nonlinear susceptibility for third-harmonic generation in crystals,” Appl. Opt. 34, 6130–6135 (1995). [CrossRef]
  27. R. W. Boyd, “The intensity-dependent refractive index,” in Nonlinear Optics, 2nd ed. (Academic, 2003), pp. 189–236.
  28. The variance is the integration of the square of the relevant function (permittivity or susceptibility) minus its mean value. The STD is the square root of the variance.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited