## Logic-qubit controlled-NOT gate of decoherence-free subspace with nonlinear quantum optics |

JOSA B, Vol. 30, Issue 7, pp. 1872-1877 (2013)

http://dx.doi.org/10.1364/JOSAB.30.001872

Enhanced HTML Acrobat PDF (269 KB)

### Abstract

The implementation of an optical system universal logic-qubit controlled-NOT gate of decoherence-free subspaces (DFSs) using the cross-Kerr nonlinearity effect is discussed. Both the control qubit and the target qubit contain two photons, the states of which are DFSs of collective-rotating noise or collective-dephasing noise. A three-qubit parity-check circuit, which is the most important unit of the quantum gate, is proposed first, and only one ancillary photon is needed in our scheme. A single-photon source, linear optical apparatus, and quantum nondemolition detector are used to perform the process. Its efficiency may approach 100% with a feed-forward process. The experimental feasibility of the strategy with current technology is also considered.

© 2013 Optical Society of America

**OCIS Codes**

(190.3270) Nonlinear optics : Kerr effect

(270.5565) Quantum optics : Quantum communications

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: April 8, 2013

Manuscript Accepted: April 26, 2013

Published: June 13, 2013

**Citation**

Chun-Yan Li, Zu-Rong Zhang, Shi-Hai Sun, Mu-Sheng Jiang, and Lin-Mei Liang, "Logic-qubit controlled-NOT gate of decoherence-free subspace with nonlinear quantum optics," J. Opt. Soc. Am. B **30**, 1872-1877 (2013)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-7-1872

Sort: Year | Journal | Reset

### References

- C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992). [CrossRef]
- F. G. Deng and G. L. Long, “Controlled order rearrangement encryption for quantum key distribution,” Phys. Rev. A 68, 042315 (2003). [CrossRef]
- X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008). [CrossRef]
- G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002). [CrossRef]
- F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block,” Phys. Rev. A 68, 042317 (2003). [CrossRef]
- C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A 71, 044305 (2005). [CrossRef]
- X. H. Li, F. G. Deng, and H. Y. Zhou, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. A 74, 054302 (2006). [CrossRef]
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
- C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992). [CrossRef]
- C. Y. Li, X. H. Li, F. G. Deng, P. Zhou, and H. Y. Zhou, “Complete multiple round quantum dense coding with quantum logical network,” Chinese Sci. Bull. 52, 1162–1165 (2007). [CrossRef]
- C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996). [CrossRef]
- K. Fujii and K. Yamamoto, “Entanglement purification with double selection,” Phys. Rev. A 80, 042308 (2009). [CrossRef]
- B. Reznik, Y. Aharonov, and B. Groisman, “Remote operations and interactions for systems of arbitrary-dimensional Hilbert space: state-operator approach,” Phys. Rev. A 65, 032312 (2002). [CrossRef]
- R. P. Feynman, “Quantum mechanical computers,” Opt. News 11(2), 11–20 (1985). [CrossRef]
- D. Deutsch, “Quantum theory, the church-turing principle and the universal quantum computer,” Proc. R. Soc. A 400, 97–117 (1985). [CrossRef]
- D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proc. R. Soc. A 439, 553–558 (1992). [CrossRef]
- P. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings (IEEE Computer Society, 1994), pp. 124–134.
- A. Barenco, C. H. Bennett, R. Cleve, D. P. Divincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A 52, 3457–3467 (1995). [CrossRef]
- T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001). [CrossRef]
- T. C. Palph, N. K. Langford, T. B. Bell, and A. G. White, “Linear optical controlled-NOT gate in the coincidence basis,” Phys. Rev. A 65, 062324 (2002). [CrossRef]
- A. S. Clark, J. Fulconis, J. G. Rarity, W. J. Wadsworth, and J. L. O’Brien, “All-optical-fiber polarization-based quantum logic gate,” Phys. Rev. A 79, 030303(R) (2009).
- E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). [CrossRef]
- K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004). [CrossRef]
- W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7, 137 (2005). [CrossRef]
- Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009). [CrossRef]
- Q. Lin and B. He, “Single-photon logic gates using minimal resources,” Phys. Rev. A 80, 042310 (2009). [CrossRef]
- D. A. Lidar and K. B. Whaley, Irreversible Quantum Dynamics, Vol. 622 of Springer Lecture Notes in Physics (Springer, 2003).
- J. C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R. W. Spekkens, “Robust polarization-based quantum key distribution over a collective-noise channel,” Phys. Rev. Lett. 92, 017901 (2004). [CrossRef]
- Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Decoherence-free subspaces in quantum key distribution,” Phys. Rev. Lett. 91, 087901 (2003). [CrossRef]
- X. B. Wang, “Fault tolerant quantum key distribution protocol with collective random unitary noise,” Phys. Rev. A 72, 050304(R) (2005).
- C. F. Wu, X. L. Feng, X. X. Yi, I. M. Chen, and C. H. Oh, “Quantum gate operations in the decoherence-free subspace of superconducting quantum-interference devices,” Phys. Rev. A 78, 062321 (2008). [CrossRef]
- Y. M. Wang, Y. L. Wang, L. M. Liang, and C. Z. Li, “Quantum gate operations in decoherence-free subspace with superconducting charge qubits inside a cavity,” Chin. Phys. Lett. 26, 100304 (2009). [CrossRef]
- X. L. Feng, C. F. Wu, H. Sun, and C. H. Oh, “Geometric entangling gates in decoherence-free subspaces with minimal requirements,” Phys. Rev. Lett. 103, 200501 (2009). [CrossRef]
- P. A. Ivanov, U. G. Poschinger, K. Singer, and F. S. Kaler, “Quantum gate in the decoherence-free subspace of trapped-ion qubits,” Europhys. Lett. 92, 30006 (2010). [CrossRef]
- X. H. Li, B. K. Zhao, Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Fault tolerant quantum key distribution based on quantum dense coding with collective noise,” Int. J. Quantum. Inform. 7, 1479–1489 (2009). [CrossRef]
- Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008). [CrossRef]
- Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010). [CrossRef]
- F. G. Deng, “Efficient multipartite entanglement purification with the entanglement link from a subspace,” Phys. Rev. A 84, 052312 (2011). [CrossRef]
- Y. B. Sheng, F. G. Deng, B. K. Zhao, T. J. Wang, and H. Y. Zhou, “Multipartite entanglement purification with quantum nondemolition detectors,” Eur. Phys. J. D 55, 235–242 (2009). [CrossRef]
- Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008). [CrossRef]
- Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A 85, 012307 (2012). [CrossRef]
- Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Single-photon entanglement concentration for long-distance quantum communication,” Quantum Inf. Comput. 10, 272–281 (2010).
- F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A 85, 022311 (2012). [CrossRef]
- L. L. Sun, H. F. Wang, S. Zhang, and K. H. Yeon, “Entanglement concentration of partially entangled three-photon W states with weak cross-Kerr nonlinearity,” J. Opt. Soc. Am. B 29, 630–634 (2012). [CrossRef]
- Y. B. Sheng, F. G. Deng, and G. L. Long, “Complete hyperentangled-Bell-state analysis for quantum communication,” Phys. Rev. A 82, 032318 (2010). [CrossRef]
- P. Grangier, J. A. Levenson, and J. P. Poizat, “Quantum non-demolition measurements in optics,” Nature 396, 537–542 (1998). [CrossRef]
- X. Y. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band,” Phys. Rev. Lett. 94, 053601 (2005). [CrossRef]
- P. Kok, H. Lee, and J. P. Dowling, “Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements,” Phys. Rev. A 66, 063814 (2002). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.