OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 7 — Jul. 1, 2013
  • pp: 1878–1884

Hiding objects and obtaining Fano resonances in index-near-zero and epsilon-near-zero metamaterials with Bragg-fiber-like defects

Tingting Wang, Jie Luo, Lei Gao, Ping Xu, and Yun Lai  »View Author Affiliations

JOSA B, Vol. 30, Issue 7, pp. 1878-1884 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (605 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We achieve one-dimensional cloaking effects in index-near-zero and epsilon-near-zero metamaterials embedded with just dielectric Bragg-fiber-structured defects. The dielectric Bragg-fiber structure (BFS) within the bandgap region can act as a perfect electric or magnetic conductor which prevents electromagnetic waves from penetrating into the core. As a result, one can hide objects inside the dielectric core without leading large distortion to the transmission. Moreover, both narrow and broad Fano profiles with variations between the total reflections and total transmissions are obtained, corresponding to the core resonances and the BFS resonances, respectively. The conditions of the total reflections and total transmissions are derived. Our work may have potential applications including applications in ultrasensitive sensors and switches.

© 2013 Optical Society of America

OCIS Codes
(160.3918) Materials : Metamaterials
(310.6805) Thin films : Theory and design

ToC Category:
Thin Films

Original Manuscript: March 21, 2013
Revised Manuscript: April 21, 2013
Manuscript Accepted: May 23, 2013
Published: June 17, 2013

Tingting Wang, Jie Luo, Lei Gao, Ping Xu, and Yun Lai, "Hiding objects and obtaining Fano resonances in index-near-zero and epsilon-near-zero metamaterials with Bragg-fiber-like defects," J. Opt. Soc. Am. B 30, 1878-1884 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef]
  3. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004). [CrossRef]
  4. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef]
  5. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  6. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9, 387–396 (2010). [CrossRef]
  7. S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002). [CrossRef]
  8. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410 (2007).
  9. L. Shen, T.-J. Yang, and Y.-F. Chau, “Effect of internal period on the optical dispersion of indefinite-medium materials,” Phys. Rev. B 77, 205124 (2008). [CrossRef]
  10. Q. Cheng, W. X. Jiang, and T. J. Cui, “Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials,” J. Phys. D 43, 335406 (2010). [CrossRef]
  11. Q. Cheng, W. X. Jiang, and T. J. Cui, “Multi-beam generations at pre-designed directions based on anisotropic zero-index metamaterials,” Appl. Phys. Lett. 99, 131913 (2011). [CrossRef]
  12. Q. Cheng, W. X. Jiang, and T. J. Cui, “Spatial power combination for omnidirectional radiation via anisotropic metamaterials,” Phys. Rev. Lett. 108, 213903 (2012). [CrossRef]
  13. J. Luo, P. Xu, and L. Gao, “Directive emission based on one-dimensional metal heterostructures,” J. Opt. Soc. Am. B 29, 35–39 (2012). [CrossRef]
  14. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97, 157403 (2006). [CrossRef]
  15. M. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B 76, 245109 (2007). [CrossRef]
  16. A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε-near-zero-filled narrow channels,” Phys. Rev. E 78, 016604 (2008). [CrossRef]
  17. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903 (2008). [CrossRef]
  18. R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100, 023903 (2008). [CrossRef]
  19. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys. 105, 044905 (2009). [CrossRef]
  20. J. Hao, W. Yan, and M. Qiu, “Super-reflection and cloaking based on zero index metamaterial,” Appl. Phys. Lett. 96, 101109 (2010). [CrossRef]
  21. Y. Jin and S. He, “Enhancing and suppressing radiation with some permeability-near-zero structures,” Opt. Express 18, 16587–16593 (2010). [CrossRef]
  22. V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett. 105, 233908 (2010). [CrossRef]
  23. Y. Xu and H. Chen, “Total reflection and transmission by epsilon-near-zero metamaterials with defects,” Appl. Phys. Lett. 98, 113501 (2011). [CrossRef]
  24. X. Huang, Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, “Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials,” Nat. Mater. 10, 582–586 (2011). [CrossRef]
  25. J. Luo, P. Xu, L. Gao, Y. Lai, and H. Chen, “Manipulate the transmissions using index-near-zero or epsilon-near-zero metamaterials with coated defects,” Plasmonics 7, 353–358 (2012). [CrossRef]
  26. W. Zhu, I. D. Rukhlenko, and M. Premaratne, “Light amplification in zero-index metamaterial with gain inserts,” Appl. Phys. Lett. 101, 031907 (2012). [CrossRef]
  27. H. F. Ma, J. H. Shi, B. G. Cai, and T. J. Cui, “Total transmission and super reflection realized by anisotropic zero-index materials,” New J. Phys. 14, 123010 (2012). [CrossRef]
  28. K. Zhang, J. Fu, L.-Y. Xiao, Q. Wu, and L.-W. Li, “Total transmission and total reflection of electromagnetic waves by anisotropic epsilon-near-zero metamaterials embedded with dielectric defects,” J. Appl. Phys. 113, 084908 (2013). [CrossRef]
  29. N. Engheta, A. Salandrino, and A. Alù, “Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors,” Phys. Rev. Lett. 95, 095504 (2005). [CrossRef]
  30. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698–1702 (2007). [CrossRef]
  31. Y. Sun, B. Edwards, A. Alù, and N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11, 208–212 (2012). [CrossRef]
  32. B. Edwards and N. Engheta, “Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry,” Phys. Rev. Lett. 108, 193902 (2012). [CrossRef]
  33. J. Luo, P. Xu, H. Chen, B. Hou, L. Gao, and Y. Lai, “Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials,” Appl. Phys. Lett. 100, 221903 (2012). [CrossRef]
  34. H. F. Ma, J. H. Shi, W. X. Jiang, and T. J. Cui, “Experimental realization of bending waveguide using anisotropic zero-index materials,” Appl. Phys. Lett. 101, 253513 (2012). [CrossRef]
  35. Y. Jin, P. Zhang, and S. He, “Squeezing electromagnetic energy with a dielectric split ring inside a permeability-near-zero metamaterial,” Phys. Rev. B 81, 085117 (2010). [CrossRef]
  36. D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett. 107, 133901 (2011). [CrossRef]
  37. S. Feng, “Loss-induced omnidirectional bending to the normal in ε-near-zero metamaterials,” Phys. Rev. Lett. 108, 193904 (2012). [CrossRef]
  38. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  39. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972). [CrossRef]
  40. J. Luo, P. Xu, and L. Gao, “Electrically controllable unidirectional transmission in a heterostructure composed of a photonic crystal and a deformable liquid droplet,” Solid State Commun. 152, 577–580 (2012). [CrossRef]
  41. A. Thelen, “Equivalent layers in multilayer filters,” J. Opt. Soc. Am. 56, 1533–1538 (1966). [CrossRef]
  42. M. C. Ohmer, “Design of three-layer equivalent films,” J. Opt. Soc. Am. 68, 137–139 (1978). [CrossRef]
  43. C. J. v. d. Laan and H. J. Frankena, “Equivalent layers: another way to look at them,” Appl. Opt. 34, 681–687 (1995). [CrossRef]
  44. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 113902 (2008). [CrossRef]
  45. J. Luo, P. Xu, and L. Gao, “Controllable switching behavior of optical Tamm state based on nematic liquid crystal,” Solid State Commun. 151, 993–995 (2011). [CrossRef]
  46. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  47. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited