OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 7 — Jul. 1, 2013
  • pp: 1898–1904

Effects of optical parametric amplifier pump phase noise on the cooling of optomechanical resonators

F. Farman and A. R. Bahrampour  »View Author Affiliations

JOSA B, Vol. 30, Issue 7, pp. 1898-1904 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (692 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, the effect of parametric amplifier pump phase noise on the cooling of a micromirror in an optomechanical system with an optical parametric amplifier inside the optical cavity is investigated theoretically. It has been demonstrated that the photon number distribution of a parametric amplifier near the threshold of instability leads to improved cooling of the micromirror. But due to the presence of the parametric amplifier, there is a resonance detuning frequency for transferring noise energy to the potential and kinetic energy fluctuations of the mirror which causes the mirror mechanical oscillation mode temperature to increase. In low quality factor cavities, this effect occurs in a nonequilibrium thermodynamic process, while in high quality factor cavities, this process is a thermal equilibrium one. The effects of the Lorentzian two-time correlations of laser phase noise on the mirror mechanical mode temperature are considered in this paper.

© 2013 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

ToC Category:
Nonlinear Optics

Original Manuscript: April 9, 2013
Revised Manuscript: May 29, 2013
Manuscript Accepted: May 30, 2013
Published: June 19, 2013

F. Farman and A. R. Bahrampour, "Effects of optical parametric amplifier pump phase noise on the cooling of optomechanical resonators," J. Opt. Soc. Am. B 30, 1898-1904 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bauerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006). [CrossRef]
  2. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006). [CrossRef]
  3. M. Paternostro, S. Gigan, M. S. Kim, F. Blaser, H. R. Bohm, and M. Aspelmeyer, “Reconstructing the dynamics of a movable mirror in a detuned optical cavity,” New J. Phys. 8, 107 (2006). [CrossRef]
  4. D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006). [CrossRef]
  5. A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008). [CrossRef]
  6. J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Grblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011). [CrossRef]
  7. C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical self cooling of a deformable Fabry–Perot cavity in the classical limit,” Phys. Rev. B 78, 035309 (2008). [CrossRef]
  8. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007). [CrossRef]
  9. L. Diosi, “Laser linewidth hazard in optomechanical cooling,” Phys. Rev. A 78, 021801(R) (2008). [CrossRef]
  10. P. Rabl, C. Genes, K. Hammerer, and M. Aspelmeyer, “Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems,” Phys. Rev. A 80, 063819 (2009). [CrossRef]
  11. S. Groblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009). [CrossRef]
  12. A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009). [CrossRef]
  13. Y. S. Park and H. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5, 489–493 (2009). [CrossRef]
  14. Z. Yin, “Phase noise and laser-cooling limits of optomechanical oscillators,” Phys. Rev. A 80, 033821 (2009). [CrossRef]
  15. G. A. Phelps and P. Meystre, “Laser phase noise effects on the dynamics of optomechanical resonators,” Phys. Rev. A 83, 063838 (2011). [CrossRef]
  16. M. Abdi, S. Barzanjeh, P. Tombesi, and D. Vitali, “Effect of phase noise on the generation of stationary entanglement in cavity optomechanics,” Phys. Rev. A 84, 032325 (2011). [CrossRef]
  17. S. Huang and G. S. Agarwal, “Enhancement of cavity cooling of a micromechanical mirror using parametric interactions,” Phys. Rev. A 79, 013821 (2009). [CrossRef]
  18. M. Suhail. Zubairy and M. Scully, Quantum Optics (Cambridge University, 1997).
  19. D. Vitali and V. Giovannetti, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phys. Rev. A 63, 023812 (2001). [CrossRef]
  20. A. Hurwitz, “On the conditions under which an equation has only roots with negative real part,” in Selected Papers on Mathematical Trends in Control Theory, R. Bellman and R. Kalaba, eds. (Dover, 1964), p. 7282.
  21. S. Huang and G. S. Agarwal, “Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity,” Phys. Rev. A 80, 033807 (2009). [CrossRef]
  22. A. Schliesser, P. DelHaye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006). [CrossRef]
  23. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quanyum theory of cavity-assisted sideband cooling of mechamnical motion,” Phys. Rev. Lett. 99, 093902 (2007). [CrossRef]
  24. H.-J. Chen and X.-W. Mi, “Normal mode splitting and ground state cooling in a Fabry–Perot optical cavity and transmission line resonator,” Chin. Phys. B 20, 124203 (2011).
  25. S. Groblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited