OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 7 — Jul. 1, 2013
  • pp: 1911–1921

Ultrafast ellipsometric interferometry for direct detection of coherent phonon strain pulse profiles

Osamu Matsuda, Motonobu Tomoda, Takehiro Tachizaki, Shun Koiwa, Atsushi Ono, Kae Aoki, Ryan P. Beardsley, and Oliver B. Wright  »View Author Affiliations

JOSA B, Vol. 30, Issue 7, pp. 1911-1921 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (615 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe an ultrafast optical technique to quantitatively detect picosecond ultrasonic displacements of solid surfaces, thus giving access to the longitudinal strain pulse shape. Transient optical reflectance changes recorded at oblique optical incidence with a common-path interferometric configuration based on ultrafast ellipsometry monitor gigahertz coherent phonon pulses. We demonstrate for a tungsten film the quantitative extraction of the strain pulse shape free of distortions arising from the photoelastic effect, and analyze the results with the two-temperature model to obtain the value g3×1017Wm3K1 for the electron–phonon coupling constant. Analysis of the data also reveals a thermo-optic contribution.

© 2013 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(320.0320) Ultrafast optics : Ultrafast optics
(320.5390) Ultrafast optics : Picosecond phenomena

ToC Category:
Physical Optics

Original Manuscript: March 18, 2013
Revised Manuscript: April 27, 2013
Manuscript Accepted: April 30, 2013
Published: June 19, 2013

Osamu Matsuda, Motonobu Tomoda, Takehiro Tachizaki, Shun Koiwa, Atsushi Ono, Kae Aoki, Ryan P. Beardsley, and Oliver B. Wright, "Ultrafast ellipsometric interferometry for direct detection of coherent phonon strain pulse profiles," J. Opt. Soc. Am. B 30, 1911-1921 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, “Coherent phonon generation and detection by picosecond light pulses,” Phys. Rev. Lett. 53, 989–992 (1984). [CrossRef]
  2. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 4129–4138 (1986). [CrossRef]
  3. O. B. Wright and K. Kawashima, “Coherent phonon detection from ultrafast surface vibrations,” Phys. Rev. Lett. 69, 1668–1671 (1992). [CrossRef]
  4. G. Tas and H. J. Maris, “Electron diffusion in metals studied by picosecond ultrasonics,” Phys. Rev. B 49, 15046–15054 (1994). [CrossRef]
  5. O. B. Wright, “Ultrafast nonequilibrium stress generation in gold and silver,” Phys. Rev. B 49, 9985–9988 (1994). [CrossRef]
  6. B. Perrin, B. Bonello, J.-C. Jeannet, and E. Romatet, “Interferometric detection of hypersound waves in modulated structures,” Prog. Nat. Sci. S6, S444–S448 (1996).
  7. J. L. Hostetler, A. N. Smith, and P. M. Norris, “Thin-film thermal conductivity and thickness measurements using picosecond ultrasonics,” Microscale Thermophys. Eng. 1, 237–244 (1997). [CrossRef]
  8. C. J. K. Richardson, M. J. Ehrlich, and J. W. Wagner, “Interferometric detection of ultrafast thermoelastic transients in thin films: theory with supporting experiment,” J. Opt. Soc. Am. B 16, 1007–1015 (1999). [CrossRef]
  9. D. H. Hurley and O. B. Wright, “Detection of ultrafast phenomena by use of a modified Sagnac interferometer,” Opt. Lett. 24, 1305–1307 (1999). [CrossRef]
  10. C. K. Sun, J. C. Liang, and X. Y. Yu, “Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields,” Phys. Rev. Lett. 84, 179–182 (2000). [CrossRef]
  11. A. Devos and C. Lerouge, “Evidence of laser-wavelength effect in picosecond ultrasonics: possible connection with interband transitions,” Phys. Rev. Lett. 86, 2669–2672 (2001). [CrossRef]
  12. O. B. Wright, B. Perrin, O. Matsuda, and V. E. Gusev, “Ultrafast carrier diffusion in gas probed with picosecond acoustic pulses,” Phys. Rev. B 64, 081202(R) (2001). [CrossRef]
  13. T. Saito, O. Matsuda, and O. B. Wright, “Picosecond acoustic phonon pulse generation in nickel and chromium,” Phys. Rev. B 67, 205421 (2003). [CrossRef]
  14. O. Matsuda, T. Tachizaki, T. Fukui, J. J. Baumberg, and O. B. Wright, “Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses,” Phys. Rev. B 71, 115330 (2005). [CrossRef]
  15. A. Huynh, N. D. Lanzillotti-Kimura, B. Jusserand, B. Perrin, A. Fainstein, M. F. Pascual-Winter, E. Peronne, and A. Lemaître, “Subterahertz phonon dynamics in acoustic nanocavities,” Phys. Rev. Lett. 97, 115502 (2006). [CrossRef]
  16. A. V. Akimov, A. V. Scherbakov, D. R. Yakovlev, C. T. Foxon, and M. Bayer, “Ultrafast band-gap shift induced by a strain pulse in semiconductor heterostructures,” Phys. Rev. Lett. 97, 037401 (2006). [CrossRef]
  17. T. Dehoux, M. Perton, N. Chigarev, C. Rossignol, J. M. Rampnoux, and B. Audoin, “Effect of laser pulse duration in picosecond ultrasonics,” J. Appl. Phys. 100, 064318 (2006). [CrossRef]
  18. M. F. P. Winter, G. Rozas, A. Fainstein, B. Jusserand, B. Perrin, A. Huynh, P. O. Vaccaro, and S. Saravanan, “Selective optical generation of coherent acoustic nanocavity modes,” Phys. Rev. Lett. 98, 265501 (2007). [CrossRef]
  19. K.-H. Lin, C.-M. Lai, C.-C. Pan, J.-I. Chyi, J.-W. Shi, S.-Z. Sun, C.-F. Chang, and C.-K. Sun, “Spatial manipulation of nanoacoustic waves with nanoscale spot sizes,” Nature Nanotech. 2, 704–708 (2007). [CrossRef]
  20. C. Rossignol, N. Chigarev, M. Ducousso, B. Audoin, G. Forget, F. Guillemot, and M. C. Durrieu, “In vitro picosecond ultrasonic in a single cell,” Appl. Phys. Lett. 93, 123901 (2008). [CrossRef]
  21. O. Matsuda, O. B. Wright, D. H. Hurley, V. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B 77, 224110 (2008). [CrossRef]
  22. O. B. Wright, B. Perrin, O. Matsuda, and V. E. Gusev, “Optical excitation and detection of picosecond acoustic pulses in liquid mercury,” Phys. Rev. B 78, 024303 (2008). [CrossRef]
  23. P. Babilotte, P. Ruello, G. Vaudel, T. Pezeril, D. Mounier, J. M. Breteau, and V. Gusev, “Picosecond acoustics in p-doped piezoelectric semiconductors,” Appl. Phys. Lett. 97, 174103 (2010). [CrossRef]
  24. H. Ogi, A. Yamamoto, K. Kondou, K. Nakano, K. Morita, N. Nakamura, T. Ono, and M. Hirao, “Significant softening of copper nanowires during electromigration studied by picosecond ultrasound spectroscopy,” Phys. Rev. B 82, 155436 (2010). [CrossRef]
  25. C. Klieber, E. Peronne, K. Katayama, J. Choi, M. Yamaguchi, T. Pezeril, and K. A. Nelson, “Narrow-band acoustic attenuation measurements in vitreous silica at frequencies between 20 and 400 GHz,” Appl. Phys. Lett. 98, 211908 (2011). [CrossRef]
  26. E. Pontecorvo, M. Ortolani, D. Polli, M. Ferretti, G. Ruocco, G. Cerullo, and T. Scopigno, “Visualizing coherent phonon propagation in the 100 GHz range: a broadband picosecond acoustics approach,” Appl. Phys. Lett. 98, 100901 (2011).
  27. Y.-C. Wen, K.-J. Wang, H.-H. Chang, J.-Y. Luo, C.-C. Shen, H.-L. Liu, C.-K. Sun, M.-J. Wang, and M.-K. Wu, “Gap opening and orbital modification of superconducting FeSe above the structural distortion,” Phys. Rev. Lett. 108, 267002 (2012). [CrossRef]
  28. J.-W. Kim, M. Vomir, and J.-Y. Bigot, “Ultrafast magnetoacoustics in nickel films,” Phys. Rev. Lett. 109, 166601 (2012). [CrossRef]
  29. N. Chigarev, C. Rossignol, and B. Audoin, “Surface displacement measured by beam distortion detection technique: application to picosecond ultrasonics,” Rev. Sci. Instrum. 77, 114901 (2006). [CrossRef]
  30. O. Matsuda and O. B. Wright, “Laser picosecond acoustics with oblique probe light incidence,” Rev. Sci. Instrum. 74, 895–897 (2003). [CrossRef]
  31. O. Matsuda, K. Aoki, T. Tachizaki, and O. Wright, “Direct measurement of ultrafast surface displacement in laser picosecond acoustics,” J. Phys. IV 125, 361–363 (2005). [CrossRef]
  32. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977).
  33. J. A. Bolger, A. E. Paul, and A. L. Smirl, “Ultrafast ellipsometry of coherent processes and exciton–exciton interactions in quantum wells at negative delays,” Phys. Rev. B 54, 11666–11671 (1996). [CrossRef]
  34. C. A. Bolme, S. D. McGrane, D. S. Moore, and D. J. Funk, “Single shot measurements of laser driven shock waves using ultrafast dynamic ellipsometry,” J. Appl. Phys. 102, 033513 (2007). [CrossRef]
  35. L. R. Watkins, “Interferometric ellipsometer,” Appl. Opt. 47, 2998–3001 (2008). [CrossRef]
  36. D. Mounier, E. Morozov, P. Ruello, J. M. Breteau, P. Picart, and V. Gusev, “Detection of shear picosecond acoustic pulses by transient femtosecond polarimetry,” Eur. J. Phys. Special Topics 153, 243–246 (2008). [CrossRef]
  37. C.-K. Min, D. G. Cahill, and S. Granick, “Time-resolved ellipsometry for studies of heat transfer at liquid/solid and gas/solid interfaces,” Rev. Sci. Instrum. 81, 074902 (2010). [CrossRef]
  38. O. Matsuda and O. B. Wright, “Reflection and transmission of light in multilayers perturbed by picosecond strain pulse propagation,” J. Opt. Soc. Am. B 19, 3028–3041 (2002). [CrossRef]
  39. A. A. Maradudin and D. L. Mills, “Scattering and absorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness,” Phys. Rev. B 11, 1392–1415 (1975). [CrossRef]
  40. W is optically isotropic because it crystallizes in the cubic (bcc) phase. In addition, the elastic constants for tungsten single crystal are c11=502, c44=152, and c12=199  GPa [59], and coincidentally obey the relation c11−c12≃2c44, so that (independent of the film microstructure) the film is effectively elastically isotropic.
  41. O. B. Wright and K. Kawashima, “Ultrasonic detection from picosecond surface vibrations: application to interfacial layer detection,” Jpn. J. Appl. Phys. 32, 2452–2454 (1993). [CrossRef]
  42. The surface roughness contributes to the frequency-dependent ultrasonic absorption (see [22]), but we estimate its effect to be small over the frequency spectrum of the ultrasonic pulse associated with the first echo. The roughness of the W/crown-glass interface is ∼5  nm, and its effect can also be neglected.
  43. T. Tachizaki, T. Muroya, O. Matsuda, Y. Sugawara, D. H. Hurley, and O. B. Wright, “Scanning ultrafast sagnac interferometry for imaging two-dimensional surface wave propagation,” Rev. Sci. Instrum. 77, 043713 (2006). [CrossRef]
  44. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 85th ed. (CRC Press, 2004).
  45. M. Tomoda, O. Matsuda, and O. B. Wright, “Tomographic reconstruction of picosecond acoustic strain propagation,” Appl. Phys. Lett. 90, 041114 (2007). [CrossRef]
  46. Some residual photoelastic effect that was not cancelled is, however, still visible near t=0. This level of small remnant should not significantly affect the shape of the final extracted surface displacement variations.
  47. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Emission of electrons from the surface of metals induced by ultrashort laser pulses,” Sov. Phys. JETP 39, 375–377 (1974).
  48. P. B. Corkum, F. Brunel, N. K. Sherman, and T. Srinivasan-Rao, “Thermal response of metals to ultrashort-pulse laser excitation,” Phys. Rev. Lett. 61, 2886–2889 (1988). [CrossRef]
  49. V. E. Gusev and O. B. Wright, “Ultrafast nonequilibrium dynamics of electrons in metals,” Phys. Rev. B 57, 2878–2888 (1998). [CrossRef]
  50. The simulation involves a nonlinear response: when the excitation energy flux is halved, for example, the maximum changes in Te and Tl are, respectively, 1.4% and 0.3% greater than the corresponding halved values. This nonlinear response is below the detection limit of the measurement here.
  51. R. T. Beyer and S. V. Letcher, Physical Ultrasonics (Academic, 1969), Chap. 10, pp. 325–358.
  52. H. Klein and O. Weis, “Absorption heat of GHz sound in polycrystalline metal films detected by multiple-beam interferometry and second-sound emission,” J. Low Temp. Phys. 94, 567–583 (1994). [CrossRef]
  53. We adopted b=4×102  m−1 GHz−2, which gives optimal agreement in the fitting of the surface displacement data, although other b differing by values of the same order also gave acceptable fits. On the other hand, a is more accurately obtained as a=(3.0±0.5)×105  m−1 for the chosen value of b. Our expression for bf2 is consistent with values of α found at 1 GHz in W (α=100–600  m−1, see [65–67]).
  54. S. Kashiwada, O. Matsuda, J. J. Baumberg, R. L. Voti, and O. B. Wright, “In situ monitoring of the growth of ice films by laser picosecond acoustics,” J. Appl. Phys. 100, 073506 (2006). [CrossRef]
  55. H. Hirori, T. Tachizaki, O. Matsuda, and O. B. Wright, “Electron dynamics in chromium probed with 20 fs optical pulses,” Phys. Rev. B 68, 113102 (2003). [CrossRef]
  56. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, eds., Thermal Conductivity—Metallic Elements and Alloys, Vol. 1 of Thermophysical Properties of Matter (IFI/Plenum, 1970).
  57. Y. S. Touloukian and E. H. Buyco, eds., Specific Heat—Metallic Elements and Alloys, Vol. 4 of Thermophysical Properties of Matter (IFI/Plenum, 1970).
  58. Z. Lin, L. V. Zhigilei, and V. Celli, “Electron–phonon coupling and electron heat capacity of metals under conditions of strong electron phonon nonequilibrium,” Phys. Rev. B 77, 075133 (2008). [CrossRef]
  59. B. A. Auld, Acoustic Fields and Waves in Solids, 2nd ed. (Krieger, 1990).
  60. As discussed in relation to Fig. 6, the permittivity at the probe light wavelength can be retrieved from the interferometric data. This fitted value for the probe light lies close to that of corresponding ellipsometry data, so we also adopted the ellipsometry data value for the pump light.
  61. J. G. Fujimoto, J. M. Liu, and E. P. Ippen, “Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures,” Phys. Rev. Lett. 53, 1837–1840 (1984). [CrossRef]
  62. S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron–phonon coupling constant λ in metallic superconductors,” Phys. Rev. Lett. 64, 2172–2175 (1990). [CrossRef]
  63. We used fitted values for the permittivity of the W film at the probe wavelength rather than from the literature, 5.3+16.2i (see [44]), or from ellipsometry measurement, 3.1+4.1i. These differences in permittivity may be attributable to impurities in the W film.
  64. The spectrum in strain, obtained by multiplication of that of the displacement by iω, shows significant noise above ∼30  GHz.
  65. C. K. Jones and J. A. Rayne, “Ultrasonic attenuation in tungsten and molybdenum up to 1  Gc/s,” Phys. Lett. 13, 282–283 (1964). [CrossRef]
  66. M. J. G. Lee, J. M. Perz, and J. Plotnick, “Electronic attenuation of longitudinal acoustic phonons in tungsten,” Phys. Rev. Lett. 48, 30–33 (1982). [CrossRef]
  67. G. D. Mansfeld, S. G. Alekseev, and I. M. Kotelyansky, “Acoustic HBAR spectroscopy of metal (W, Ti, Mo, Al) thin films,” in Ultrasonics Symposium, Vol. 1 (IEEE, 2001) pp. 415–418.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited