OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 7 — Jul. 1, 2013
  • pp: 1922–1927

Distillation of phase-damped continuous-variable entanglement with photon subtraction

ShengLi Zhang, JianHong Shi, ChenHui Jin, XuBo Zou, BaoSen Shi, and GuangCan Guo  »View Author Affiliations

JOSA B, Vol. 30, Issue 7, pp. 1922-1927 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (328 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photon subtraction (PS) is a widely used technique in the distillation of noise-damped continuous-variable Gaussian entangled states. In the literature, all distillation schemes with the PS technique are restricted to pure Gaussian entanglement or amplitude-damped entanglement, and it is not clear whether PS is applicable in overcoming the phase noise or even more general noise. In this paper, we show that the PS technique is versatile and can still be used to distill entanglement that is subject to phase noise and simultaneous phase and amplitude noise.

© 2013 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics
(270.6570) Quantum optics : Squeezed states

ToC Category:
Quantum Optics

Original Manuscript: March 7, 2013
Revised Manuscript: May 9, 2013
Manuscript Accepted: May 30, 2013
Published: June 24, 2013

ShengLi Zhang, JianHong Shi, ChenHui Jin, XuBo Zou, BaoSen Shi, and GuangCan Guo, "Distillation of phase-damped continuous-variable entanglement with photon subtraction," J. Opt. Soc. Am. B 30, 1922-1927 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  2. J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002). [CrossRef]
  3. J. Fiurášek, “Gaussian transformations and distillation of entangled Gaussian states,” Phys. Rev. Lett. 89, 137904 (2002). [CrossRef]
  4. G. Giedke and J. I. Cirac, “Characterization of Gaussian operations and distillation of Gaussian states,” Phys. Rev. A 66, 032316 (2002). [CrossRef]
  5. T. Opatrný, G. Kurizki, and D. G. Welsch, “Improvement on teleportation of continuous variables by photon subtraction via conditional measurement,” Phys. Rev. A 61, 032302 (2000). [CrossRef]
  6. H. Takahashi, J. S. Neergaard-Nielsen, M. Takeuchi, M. Takeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Entanglement distillation from Gaussian input states,” Nat. Photonics 4, 178–181 (2010). [CrossRef]
  7. S. Olivares, M. G. A. Paris, and R. Bonifacio, “Teleporation improvement by inconclusive photon subtraction,” Phys. Rev. A 67, 032314 (2003). [CrossRef]
  8. A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles, “Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states,” Phys. Rev. A 73, 042310 (2006). [CrossRef]
  9. S. Zhang and P. van Loock, “Distillation of mixed-state continuous-variable entanglement by photon subtraction,” Phys. Rev. A 82, 062316 (2010). [CrossRef]
  10. S. Zhang and P. van Loock, “Local Gaussian operations can enhance continuous-variable entanglement distillation,” Phys. Rev. A 84, 062309 (2011). [CrossRef]
  11. J. Fiurášek, “Improving entanglement concentration of Gaussian states by local displacements,” Phys. Rev. A 84, 012335 (2011). [CrossRef]
  12. S. Yang, X. Zou, S. Zhang, B.-S. Shi, P. van Loock, and G. Guo, “Multipartite continuous-variable entanglement distillation using local squeezing and only one photon-subtraction operation,” arXiv.org, arXiv:1106.1536.
  13. B. Hage, A. Samblowski, J. Diguglielmo, A. Franzen, J. Fiurášek, and R. Schnabel, “Preparation of distilled and purified continuous-variable entangled states,” Nat. Phys. 4, 915–918 (2008). [CrossRef]
  14. J. Heersink, Ch. Marquardt, R. Dong, R. Filip, S. Lorenz, G. Leuchs, and U. L. Andersen, “Distillation of squeezing from non-Gaussian quantum states,” Phys. Rev. Lett. 96, 253601 (2006). [CrossRef]
  15. A. Franzen, B. Hage, J. DiGuglielmo, J. Fiurášek, and R. Schnabel, “Experimental demonstration of continuous variable purification of squeezed states,” Phys. Rev. Lett. 97, 150505 (2006). [CrossRef]
  16. B. Hage, A. Franzen, J. DiGuglielmo, P. Marek, J. Fiurášek, and R. Schnabel, “On the distillation and purification of phase-diffused squeezed states,” New J. Phys. 9, 227 (2007). [CrossRef]
  17. S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869–872 (1998). [CrossRef]
  18. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005). [CrossRef]
  19. G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002). [CrossRef]
  20. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).
  21. T. Hiroshima, “Decoherence and entanglement in two-mode squeezed vacuum states,” Phys. Rev. A 63, 022305 (2001). [CrossRef]
  22. S. Zhang, X. Zou, S. Yang, C. Li, C. Jin, and G. Guo, “Steady atomic entanglement in cavity QED without state initialization,” Phys. Rev. A 80, 062320 (2009). [CrossRef]
  23. S. Yang, M. Gong, C. Li, X. Zou, and G. Guo, “Optically pumping hole spins in coupled quantum dot molecules into a steady state of high concurrence entanglement,” Phys. Rev. B 80, 235322 (2009). [CrossRef]
  24. Y. Dong, X. Zou, S. Zhang, S. Yang, C. Li, and G. Guo, “Cavity-QED-based phase gate for photonic qubits,” J. Mod. Opt. 56, 1230–1233 (2009). [CrossRef]
  25. Y. Gong, Y. Zhang, Y. Dong, X. Niu, Y. Huang, and G. Guo, “Dependence of the decoherence of polarization states in phase-damping channels on the frequency spectrum envelope of photons,” Phys. Rev. A 78, 042103 (2008). [CrossRef]
  26. Solving partial differential equations using finite element methods, MATLAB, Partial Differential Equation toolbox, http://www.mathworks.cn/products/pde .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited