OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 7 — Jul. 1, 2013
  • pp: 1928–1936

Controllable twin laser pulse propagation and dual-optical switching in a four-level quantum dot nanostructure

Yihong Qi, Fengxue Zhou, Jie Yang, Yueping Niu, and Shangqing Gong  »View Author Affiliations


JOSA B, Vol. 30, Issue 7, pp. 1928-1936 (2013)
http://dx.doi.org/10.1364/JOSAB.30.001928


View Full Text Article

Enhanced HTML    Acrobat PDF (5048 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate control of the propagation dynamics of weak twin laser pulses and propose a dual-optical switching scheme in four-level semiconductor quantum dots of diamond configuration. It is shown that the propagation dynamics of the two probe pulses depend not only on the intensity of corresponding control field in each cascade transition path but also on the relative intensities of the two control fields. This property provides the probability for realizing all-optical switching in the quantum dots. Possible all-optical switching operations for any one of the probe fields or both probe fields simultaneously with the same or adverse switching status can be realized by modulating the corresponding control fields. In addition, the relative phase of the laser fields also influences the switching operation and can be used to realize optical switching, which is also discussed in the paper.

© 2013 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5530) Quantum optics : Pulse propagation and temporal solitons

ToC Category:
Quantum Optics

History
Original Manuscript: March 11, 2013
Revised Manuscript: May 23, 2013
Manuscript Accepted: May 26, 2013
Published: June 24, 2013

Citation
Yihong Qi, Fengxue Zhou, Jie Yang, Yueping Niu, and Shangqing Gong, "Controllable twin laser pulse propagation and dual-optical switching in a four-level quantum dot nanostructure," J. Opt. Soc. Am. B 30, 1928-1936 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-7-1928


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  2. M. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003). [CrossRef]
  3. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  4. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference, ” Phys. Rev. Lett. 81, 3611–3614 (1998). [CrossRef]
  5. E. A. Korsunsky and D. V. Kosachiov, “Phase-dependent nonlinear optics with double-Λ atoms, ” Phys. Rev. A 60, 4996–5009 (1999). [CrossRef]
  6. M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999). [CrossRef]
  7. B. S. Ham and P. R. Hemmer, “Coherence switching in a four-level system: quantum switching,” Phys. Rev. Lett. 84, 4080–4083 (2000). [CrossRef]
  8. M. Yan, E. G. Rickey, and Y. Zhu, “Observation of doubly dressed states in cold atoms,” Phys. Rev. A 64, 013412 (2001). [CrossRef]
  9. S. E. Harris, “Lasers without inversion: interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989). [CrossRef]
  10. Y. Xue, G. Wang, J.-H. Wu, and J.-Y. Gao, “Optical gain properties in a coherently prepared four-level cold atomic system,” Phys. Rev. A 75, 063832 (2007). [CrossRef]
  11. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  12. L. J. Wang, A. Kuzmich, and A. Dogariu, “Gain-assisted superluminal light propagation,” Nature 406, 277–279 (2000). [CrossRef]
  13. S. E. Harris, “Electromagnetically induced transparency with matched pulses,” Phys. Rev. Lett. 70, 552–555 (1993). [CrossRef]
  14. H. Wang, D. Goorskey, and M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001). [CrossRef]
  15. H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996). [CrossRef]
  16. Y. Niu, S. Gong, R. Li, and X. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30, 3371–3373 (2005). [CrossRef]
  17. L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves,” Phys. Rev. Lett. 88, 143902 (2002). [CrossRef]
  18. Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004). [CrossRef]
  19. Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004). [CrossRef]
  20. T. Hong, “Spatial weak-light solitons in an electromagnetically induced nonlinear waveguide,” Phys. Rev. Lett. 90, 183901 (2003). [CrossRef]
  21. H. Michinel, M. J. Paz-Alonso, and V. M. Pérez-Garca, “Turning light into a liquid via atomic coherence,” Phys. Rev. Lett. 96, 023903 (2006). [CrossRef]
  22. C. Hang, G. X. Huang, and L. Deng, “Stable high-dimensional spatial weak-light solitons in a resonant three-state atomic system,” Phys. Rev. E 74, 046601 (2006). [CrossRef]
  23. I. Friedler, G. Kurizki, O. Cohen, and M. Segev, “Spatial Thirring-type solitons via electromagnetically induced transparency,” Opt. Lett. 30, 3374–3376 (2005). [CrossRef]
  24. G. X. Huang, C. Hang, and L. Deng, “Gain-assisted superluminal optical solitons at very low light intensity,” Phys. Rev. A 77, 011803 (2008). [CrossRef]
  25. L.-G. Si, W.-X. Yang, X.-Y. Lü, X. Hao, and X. Yang, “Formation and propagation of ultraslow three-wave-vector optical solitons in a cold seven-level triple-Λ atomic system under Raman excitation,” Phys. Rev. A 82, 013836 (2010). [CrossRef]
  26. Y. Qi, F. Zhou, T. Huang, Y. Niu, and S. Gong, “Spatial vector solitons in a four-level tripod-type atomic system,” Phys. Rev. A 84, 023814 (2011). [CrossRef]
  27. M. C. Phillips, H. Wang, I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder, “Electromagnetically induced transparency in semiconductors via biexciton coherence,” Phys. Rev. Lett. 91, 183602 (2003). [CrossRef]
  28. W. W. Chow, H. C. Schneider, and M. C. Phillips, “Theory of quantum-coherence phenomena in semiconductor quantum dots,” Phys. Rev. A 68, 053802 (2003). [CrossRef]
  29. H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997). [CrossRef]
  30. J. F. Dynes, M. D. Frogley, J. Rodger, and C. C. Phillips, “Optically mediated coherent population trapping in asymmetric semiconductor quantum wells,” Phys. Rev. B 72, 085323 (2005). [CrossRef]
  31. D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59, 12212–12215 (1999). [CrossRef]
  32. M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nat. Mater. 5, 175 (2006). [CrossRef]
  33. C. Yuan and K. Zhu, “Voltage-controlled slow light in asymmetry double quantum dots,” Appl. Phys. Lett. 89, 052115 (2006). [CrossRef]
  34. H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007). [CrossRef]
  35. C. Zhu and G. Huang, “Giant Kerr nonlinearity, controlled entangled photons and polarization phase gates in coupled quantum-well,” Opt. Express 19, 23364–23376 (2011). [CrossRef]
  36. Y. Qi, Y. Niu, Y. Xiang, H. Wang, and S. Gong, “Phase dependence of cross-phase modulation in asymmetric quantum wells,” Opt. Commun. 284, 276–281 (2011). [CrossRef]
  37. S. F. Yelin and P. R. Hemmer, “Resonantly enhanced nonlinear optics in semiconductor quantum wells: an application to sensitive infrared detection,” Phys. Rev. A 66, 013803 (2002). [CrossRef]
  38. E. Paspalakis, “Localizing two interacting electrons in a driven quantum dot molecule,” Phys. Rev. B 67, 233306 (2003). [CrossRef]
  39. E. Paspalakis, A. Kalini, and A. F. Terzis, “Local field effects in excitonic population transfer in a driven quantum dot system,” Phys. Rev. B 73, 073305 (2006). [CrossRef]
  40. B. D. Gerardot, D. Brunner, P. A. Dalgarno, K. Karrai, A. Badolato, P. M. Petroff, and R. J. Warburton, “Dressed excitonic states and quantum interference in a three-level quantum dot ladder system,” New J. Phys. 11, 013028 (2009). [CrossRef]
  41. M. Yan, E. G. Rickey, and Y. Zhu, “Observation of absorptive photon switching by quantum interference,” Phys. Rev. A 64, 041801 (2001). [CrossRef]
  42. D. A. Braje, V. Balić, G. Y. Yin, and S. E. Harris, “Low-light-level nonlinear optics with slow light,” Phys. Rev. A 68, 041801 (2003). [CrossRef]
  43. Y. F. Chen, Z. H. Tsai, Y. C. Liu, and I. A. Yu, “Low-light-level photon switching by quantum interference,” Opt. Lett. 30, 3207–3209 (2005). [CrossRef]
  44. M. A. Antón, O. G. Calderón, S. Melle, I. Gonzalo, and F. Carreño, “All-optical switching and storage in a four-level tripod-type atomic system,” Opt. Commun. 268, 146–154 (2006). [CrossRef]
  45. H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73, 011802 (2006). [CrossRef]
  46. D. D. Yavuz, “All-optical femtosecond switch using two-photon absorption,” Phys. Rev. A 74, 053804 (2006). [CrossRef]
  47. J. H. Li, R. Yu, L. G. Si, and X. X. Yang, “Propagation of twin light pulses under magneto-optical switching operations in a four-level inverted-Y atomic medium,” J. Phys. B 43, 065502 (2010). [CrossRef]
  48. Y. Qi, Y. Niu, F. Zhou, Y. Peng, and S. Gong, “Phase control of coherent pulse propagation and switching based on electromagnetically induced transparency in a four-level atomic system,” J. Phys. B 44, 085502 (2011). [CrossRef]
  49. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95, 057401 (2005). [CrossRef]
  50. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Dynamic control of coherent pulses via Fano-type interference in asymmetric double quantum wells,” Phys. Rev. A 73, 053818 (2006). [CrossRef]
  51. J. Gea-Banacloche, M. Mumba, and M. Xiao, “Optical switching in arrays of quantum dots with dipole–dipole interactions,” Phys. Rev. B 74, 165330 (2006). [CrossRef]
  52. M. A. Antón, F. Carreño, O. G. Calderón, and S. Melle, “All-optical control of the time delay in a one-dimensional photonic bandgap formed by double-quantum-wells,” Opt. Commun. 281, 644–654 (2008). [CrossRef]
  53. J. Li, R. Yu, and X. Yang, “Design of electro-optic switching via a photonic crystal cavity coupled to a quantum-dot molecule and waveguides,” Phys. Lett. A 374, 3762–3767 (2010). [CrossRef]
  54. S. J. Buckle, S. M. Barnett, P. L. Knight, M. A. Lauder, and D. T. Pegg, “Atomic interferometers: phase-dependence in multilevel atomic transitions,” Optica Acta 33, 1129–1140 (1986). [CrossRef]
  55. Y. Xue, Q.-Y. He, G. C. LaRocca, M. Artoni, J.-H. Xu, and J.-Y. Gao, “Dynamic control of four-wave-mixing enhancement in coherently driven four-level atoms,” Phys. Rev. A 73, 013816 (2006). [CrossRef]
  56. K. Brunner, G. Abstreiter, G. Böhm, G. Tränkle, and G. Weimann, “Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure,” Phys. Rev. Lett. 73, 1138–1141 (1994). [CrossRef]
  57. X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S. Katzer, D. Park, C. Piermarocchi, and L. J. Sham, “An all-optical quantum gate in a semiconductor quantum dot,” Science 301, 809–811 (2003). [CrossRef]
  58. W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Control of fine-structure splitting and biexciton binding in InxGa1−xAs quantum dots by annealing,” Phys. Rev. B 69, 161301 (2004). [CrossRef]
  59. W.-X. Yang, A.-X. Chen, R.-K. Lee, and Y. Wu, “Matched slow optical soliton pairs via biexciton coherence in quantum dots,” Phys. Rev. A 84, 013835 (2011). [CrossRef]
  60. C. Ding, X. Hao, J. Li, and X. Yang, “Efficient generation of maximally entangled states via four-wave mixing in a semiconductor quantum-dot nanostructure,” Phys. Lett. A 374, 680–686 (2010). [CrossRef]
  61. X. Hao, J. Wu, and Y. Wang, “Steady-state absorption–dispersion properties and four-wave mixing process in a quantum dot nanostructure,” J. Opt. Soc. Am. B 29, 420–428 (2012). [CrossRef]
  62. J. Faist, F. Capasso, C. Sirtori, K. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997). [CrossRef]
  63. G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000). [CrossRef]
  64. D. Kosachiov, B. Matisov, and Y. Rozhdestvensky, “Coherent population trapping: sensitivity of an atomic system to the relative phase of exciting fields,” Opt. Commun. 85, 209–212 (1991). [CrossRef]
  65. W. Maichen, R. Gaggl, E. Korsunsky, and L. Windholz, “Observation of phase-dependent coherent population trapping in optically closed atomic systems,” Europhys. Lett. 31, 189–194 (1995). [CrossRef]
  66. M. Paillard, X. Marie, P. Renucci, T. Amand, A. Jbeli, and J. M. Gerard, “Spin relaxation quenching in semiconductor quantum dots,” Phys. Rev. Lett. 86, 1634–1637 (2001). [CrossRef]
  67. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001). [CrossRef]
  68. M. Larqué, I. Robert-Philip, and A. Beveratos, “Bell inequalities and density matrix for polarization-entangled photons out of a two-photon cascade in a single quantum dot,” Phys. Rev. A 77, 042118 (2008). [CrossRef]
  69. J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16, S3727–S3735 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited